wjbmattingly's picture
Upload finetune.py
2c92317 verified
raw
history blame
4.77 kB
import pandas as pd
from datasets import load_dataset
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainingArguments, Seq2SeqTrainer
from PIL import Image
import io
import numpy as np
device = 'mps:0'
# Load the dataset and filter for Latin entries
dataset = load_dataset("CATMuS/medieval", split='train')
# latin_dataset = dataset.filter(lambda example: example['language'] == 'Latin')
latin_dataset = dataset.filter(lambda example: example['language'] == 'Latin' and example['script_type'] == 'Caroline')
print(latin_dataset)
# Convert to pandas DataFrame for easier manipulation
df = pd.DataFrame(latin_dataset)
# Split the data into training and testing sets
train_df, test_df = train_test_split(df, test_size=0.2)
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
# Define the dataset class
class HandwrittenTextDataset(Dataset):
def __init__(self, df, processor, max_target_length=128):
self.df = df
self.processor = processor
self.max_target_length = max_target_length
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
image_data = self.df['im'][idx]
text = self.df['text'][idx]
# Convert array to PIL image
image = Image.fromarray(np.array(image_data)).convert("RGB")
# Prepare image (i.e., resize + normalize)
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
# Add labels (input_ids) by encoding the text
labels = self.processor.tokenizer(text,
padding="max_length",
max_length=self.max_target_length,
truncation=True).input_ids
# Important: make sure that PAD tokens are ignored by the loss function
labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
return encoding
# Instantiate processor and dataset
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
train_dataset = HandwrittenTextDataset(df=train_df, processor=processor)
eval_dataset = HandwrittenTextDataset(df=test_df, processor=processor)
# Create corresponding dataloaders
train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True)
eval_dataloader = DataLoader(eval_dataset, batch_size=4)
# Load the model
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
# Set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# Make sure vocab size is set correctly
model.config.vocab_size = model.config.decoder.vocab_size
# Set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = 64
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 3
model.config.length_penalty = 2.0
model.config.num_beams = 4
# Training arguments
training_args = Seq2SeqTrainingArguments(
output_dir="./results",
per_device_train_batch_size=4,
num_train_epochs=10,
logging_steps=1000,
save_steps=1000,
evaluation_strategy="steps",
save_total_limit=2,
predict_with_generate=True,
fp16=False, # Set to True if using a compatible GPU
)
# Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Train the model
trainer.train()
# After training, save both the model and the processor
model.save_pretrained("./finetuned_model")
processor.save_pretrained("./finetuned_model")
from datasets import load_metric
cer_metric = load_metric("cer")
def compute_cer(pred_ids, label_ids):
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
label_ids[label_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(label_ids, skip_special_tokens=True)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
return cer
# Evaluation
model.eval()
valid_cer = 0.0
with torch.no_grad():
for batch in eval_dataloader:
# Run batch generation
outputs = model.generate(batch["pixel_values"].to(device))
# Compute metrics
cer = compute_cer(pred_ids=outputs, label_ids=batch["labels"])
valid_cer += cer
print("Validation CER:", valid_cer / len(eval_dataloader))