Instruction
For more information, visit our GitHub repository: https://github.com/medfound/medfound
Quickstart
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "medicalai/ClinicalGPT-R1-Qwen-7B-EN-preview"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
data = pd.read_json('data/test.zip', lines=True).iloc[1]
prompt = f"{data["context"]}\n\nPlease provide a detailed and comprehensive diagnostic analysis of this medical record, and give the diagnostic results.\n"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
input_ids = tokenizer([text], return_tensors="pt").to(model.device)
output_ids = model.generate(**input_ids, max_new_tokens=2048, temperature=0.7, do_sample=True).to(model.device)
generated_text = tokenizer.decode(output_ids[0,len(input_ids[0]):], skip_special_tokens=True)
print("Generated Output:\n", generated_text)
Citation
If you find our work helpful, feel free to give us a cite.
Wang, G., Liu, X., Liu, H., Yang, G. et al. A Generalist Medical Language Model for Disease Diagnosis Assistance. Nat Med (2025). https://doi.org/10.1038/s41591-024-03416-6
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.