|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutLMv3-finetuned-confluence |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutLMv3-finetuned-confluence |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1354 |
|
- Precision: 0.8992 |
|
- Recall: 0.9126 |
|
- F1: 0.9058 |
|
- Accuracy: 0.8578 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 8.33 | 250 | 0.9563 | 0.8807 | 0.9056 | 0.8930 | 0.8505 | |
|
| 0.0199 | 16.67 | 500 | 1.0827 | 0.8792 | 0.9041 | 0.8915 | 0.8393 | |
|
| 0.0199 | 25.0 | 750 | 1.0539 | 0.8834 | 0.9036 | 0.8934 | 0.8493 | |
|
| 0.0048 | 33.33 | 1000 | 1.1217 | 0.8944 | 0.9131 | 0.9036 | 0.8583 | |
|
| 0.0048 | 41.67 | 1250 | 1.1195 | 0.9004 | 0.9071 | 0.9037 | 0.8616 | |
|
| 0.0025 | 50.0 | 1500 | 1.1927 | 0.8923 | 0.9056 | 0.8989 | 0.8467 | |
|
| 0.0025 | 58.33 | 1750 | 1.1155 | 0.9017 | 0.9116 | 0.9066 | 0.8640 | |
|
| 0.0008 | 66.67 | 2000 | 1.1871 | 0.8971 | 0.9056 | 0.9014 | 0.8395 | |
|
| 0.0008 | 75.0 | 2250 | 1.1709 | 0.9007 | 0.9106 | 0.9056 | 0.8420 | |
|
| 0.0006 | 83.33 | 2500 | 1.1354 | 0.8992 | 0.9126 | 0.9058 | 0.8578 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|