Translation
Transformers
English
Kinyarwanda
Inference Endpoints
Kleber commited on
Commit
a96ec30
·
1 Parent(s): 4c330b9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-2.0
3
+ datasets:
4
+ - mbazaNLP/NMT_Tourism_parallel_data_en_kin
5
+ - mbazaNLP/NMT_Education_parallel_data_en_kin
6
+ - mbazaNLP/Kinyarwanda_English_parallel_dataset
7
+ language:
8
+ - en
9
+ - rw
10
+ library_name: transformers
11
+
12
+ pipeline_tag: translation
13
+ ---
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+
18
+ <!-- Provide a longer summary of what this model is. -->
19
+
20
+ This is a Machine Translation model, finetuned from [NLLB](https://huggingface.co/facebook/nllb-200-distilled-1.3B)-200's distilled 1.3B model, it is meant to be used in machine translation for education-related data.
21
+
22
+ - **Finetuning code repository:** the code used to finetune this model can be found [here](https://github.com/Digital-Umuganda/twb_nllb_finetuning)
23
+
24
+ ## Quantization details
25
+
26
+ The model is quantized to 8-bit precision using the Ctranslate2 library.
27
+ ```
28
+ pip install ctranslate2
29
+ ```
30
+ Using the command:
31
+ ```
32
+ ct2-transformers-converter --model <model-dir> --quantization int8 --output_dir <output-model-dir>
33
+ ```
34
+
35
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
36
+
37
+
38
+ ## How to Get Started with the Model
39
+
40
+ Use the code below to get started with the model.
41
+
42
+
43
+ ### Training Procedure
44
+
45
+ The model was finetuned on three datasets; a [general](https://huggingface.co/datasets/mbazaNLP/Kinyarwanda_English_parallel_dataset) purpose dataset, a [tourism](https://huggingface.co/datasets/mbazaNLP/NMT_Tourism_parallel_data_en_kin), and an [education](https://huggingface.co/datasets/mbazaNLP/NMT_Education_parallel_data_en_kin) dataset.
46
+
47
+ The model was finetuned in two phases.
48
+
49
+ #### Phase one:
50
+ - General purpose dataset
51
+ - Education dataset
52
+ - Tourism dataset
53
+
54
+ #### Phase two:
55
+ - Education dataset
56
+
57
+ Other than the dataset changes between phase one, and phase two finetuning; no other hyperparameters were modified. In both cases, the model was trained on an A100 40GB GPU for two epochs.
58
+
59
+
60
+ ## Evaluation
61
+
62
+ <!-- This section describes the evaluation protocols and provides the results. -->
63
+
64
+
65
+
66
+ <!-- This should link to a Data Card if possible. -->
67
+
68
+
69
+ #### Metrics
70
+
71
+ Model performance was measured using BLEU, spBLEU, TER, and chrF++ metrics.
72
+
73
+ ### Results