mazayo commited on
Commit
e63be2f
1 Parent(s): 74ef62c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.18 +/- 0.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0288f9a592841140cb3f83e26102a18711e46af4f6d8e4e7f1681a1822b562ed
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b11f3b1cca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7b11f3b16580>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1696818256258117589,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIRocv3XY774xa6I+nBD/vR1B5T7Dzl2+MJkoP4C4mr8Rwpe/4spyvzlLnD8+cKm/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMViFv+sxur9S6pw/YPUDv39SlT99Kt++ytxgP5SeEL++nFW/ZCedv60IQD++WIi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhGhy/ddjvvjFroj5Y1VK/AwjVv3X6ZD+cEP+9HUHlPsPOXb5HO++/u0vVPxfbsb8wmSg/gLiavxHCl7+ZMRo/eAEWv//txb/iynK/OUucPz5wqb+62HK/e4MeP+wsc7+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.6097737 -0.4684483 0.31722406]\n [-0.1245434 0.4477624 -0.21660905]\n [ 0.65858746 -1.2087555 -1.1856099 ]\n [-0.94840825 1.2210456 -1.3237379 ]]",
34
+ "desired_goal": "[[-1.0417539 -1.4546484 1.2259009 ]\n [-0.5154629 1.1665801 -0.43587103]\n [ 0.878369 -0.5649197 -0.83442295]\n [-1.2277646 0.7501324 -1.0652082 ]]",
35
+ "observation": "[[-0.6097737 -0.4684483 0.31722406 -0.82356787 -1.664307 0.8944467 ]\n [-0.1245434 0.4477624 -0.21660905 -1.8689965 1.6663736 -1.3894986 ]\n [ 0.65858746 -1.2087555 -1.1856099 0.6023193 -0.5859599 -1.5463256 ]\n [-0.94840825 1.2210456 -1.3237379 -0.9486195 0.61919373 -0.9499042 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE+8UPYrZ5D0UBRs+d1v1PeLT6Lx+/O09zfcvPV1R5z2Yccs9AMAmOykrML3cQSw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.03636081 0.11174305 0.15138656]\n [ 0.11980336 -0.02842135 0.11620425]\n [ 0.04296093 0.11294816 0.09933776]\n [ 0.0025444 -0.04300991 0.16821998]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7qmbb1yvLaMAWyUSwKMAXSUR0CmVnGRmseXdX2UKGgGR7/Wf779AHE/aAdLBGgIR0CmV3swDeTFdX2UKGgGR7/Dn9vS+g14aAdLAmgIR0CmVyP8yeqadX2UKGgGR7/S+KTB68g7aAdLA2gIR0CmVs2L5ylvdX2UKGgGR7+pHEuQIUrTaAdLAWgIR0CmV3/Wcz68dX2UKGgGR7+lbRnezlcRaAdLAWgIR0CmVtIC+10DdX2UKGgGR7+ywQlKK509aAdLAmgIR0CmVnqzRhMKdX2UKGgGR7+/TnaFmFrVaAdLAmgIR0CmV4rA57w8dX2UKGgGR7/RNOuaF23baAdLA2gIR0CmVzOmrKeTdX2UKGgGR7/JK/20zCUHaAdLA2gIR0CmVonOKO1fdX2UKGgGR7/YLi++M6zWaAdLBGgIR0CmVuVh1DBudX2UKGgGR7/S1WbPQfITaAdLA2gIR0CmV5d87ZFodX2UKGgGR7/YxsVLzwtraAdLBGgIR0CmV0SCWeH0dX2UKGgGR7/KL4N7SiM6aAdLA2gIR0CmVparvLHNdX2UKGgGR7/AS9M9KVY7aAdLAmgIR0CmV6LonrprdX2UKGgGR7/YzAvcrRShaAdLBGgIR0CmVvoIWxhVdX2UKGgGR7+9Y+0PYnOTaAdLAmgIR0CmVqLELpiadX2UKGgGR7+1fVqesgdPaAdLAmgIR0CmV6x5LRKIdX2UKGgGR7/WKvmozeoDaAdLA2gIR0CmV1UrTYukdX2UKGgGR7/FWQwK0D2baAdLAmgIR0CmV7SksSTRdX2UKGgGR7+zPjXFtKqXaAdLAmgIR0CmV11aOgg6dX2UKGgGR7/QhL5AQg9vaAdLA2gIR0CmVwb6P8yfdX2UKGgGR7/I+ZgG8mKJaAdLA2gIR0CmVq+1jRUndX2UKGgGR7+7W5H3Dej3aAdLAmgIR0CmV8HfMwDedX2UKGgGR7/CYplSS/0vaAdLAmgIR0CmVxQP7N0OdX2UKGgGR7/UyTpxFRYSaAdLA2gIR0CmVsBzV+ZxdX2UKGgGR7/X7MPjGT9saAdLBGgIR0CmV3K3/givdX2UKGgGR7/UdyDIzWPMaAdLA2gIR0CmV84wyqMndX2UKGgGR7/Rtnwob4rSaAdLA2gIR0CmVyDAzpHJdX2UKGgGR7++rp7kXDWLaAdLAmgIR0CmVsmgzxgBdX2UKGgGR7+76dlNDc/MaAdLAmgIR0CmV340VJtjdX2UKGgGR7+lpKzzErGzaAdLAWgIR0CmVyeu3c59dX2UKGgGR7+9oJzDGcWkaAdLAmgIR0CmVtRA0KqodX2UKGgGR7/Wm9g4OtnxaAdLA2gIR0CmV93R5TqCdX2UKGgGR7/AJVsDW9UTaAdLAmgIR0CmVy/ek56udX2UKGgGR7+YD9wWFev7aAdLAWgIR0CmVth1klNUdX2UKGgGR7/NS7Xg9/z8aAdLA2gIR0CmV4qyOaOQdX2UKGgGR7/BK28Zk079aAdLAmgIR0CmVzhvBJqZdX2UKGgGR7/H3PiT+vQoaAdLA2gIR0CmVufJmukldX2UKGgGR7/ZinYQJ5VwaAdLBGgIR0CmV/F3Y+SsdX2UKGgGR7/QvcJtzjm0aAdLA2gIR0CmV5o0IkZ8dX2UKGgGR7+m0gKWszVMaAdLAWgIR0CmV/WugYgrdX2UKGgGR7/RY0EX+ERKaAdLBGgIR0CmV0vNeMQ3dX2UKGgGR7/L9rGipNsWaAdLA2gIR0CmVvSDIzWPdX2UKGgGR7+46mwaBI4EaAdLAmgIR0CmV/4cWCVbdX2UKGgGR7+fnSv1UVBVaAdLAWgIR0CmVvmlQ/HHdX2UKGgGR7/VExIre67NaAdLBGgIR0CmV66ttALRdX2UKGgGR7+xBeHBUJfIaAdLAmgIR0CmV1hB7eEadX2UKGgGR7+4BZIQOFxoaAdLAmgIR0CmVwTKDCgsdX2UKGgGR7/RJo0ygwoLaAdLA2gIR0CmWA5+x4Y8dX2UKGgGR7+9wdbPhQ3xaAdLAmgIR0CmV7c5jpcHdX2UKGgGR7+6apgkTpPiaAdLAmgIR0CmV2DmbLEDdX2UKGgGR7+l0vGp++dtaAdLAWgIR0CmVwmOMl1KdX2UKGgGR7+5XaJyhi9aaAdLAmgIR0CmWBcxbjcVdX2UKGgGR7++xptaY/mlaAdLAmgIR0CmV2myon8bdX2UKGgGR7/ObG3nZCfIaAdLA2gIR0CmV8e+/QBxdX2UKGgGR7+bDl5nlGPQaAdLAWgIR0CmV3GOMl1KdX2UKGgGR7/RdPci4axYaAdLA2gIR0CmVxqZc9nsdX2UKGgGR7++S+xnnMdMaAdLAmgIR0CmV9DEm6XjdX2UKGgGR7/YIBBAv+OwaAdLBGgIR0CmWCyPluFYdX2UKGgGR7+d52Qnx8UmaAdLAWgIR0CmV9VG9YfXdX2UKGgGR7/HV9Wp6yB1aAdLA2gIR0CmV37aAWi2dX2UKGgGR7/Iqfe1rqMWaAdLA2gIR0CmVyflIVdpdX2UKGgGR7/G+8Gs3hn8aAdLA2gIR0CmWDwLux8ldX2UKGgGR7/Tv8ZUDMePaAdLA2gIR0CmV+T8YQ8PdX2UKGgGR7/KdkJ8fFJhaAdLA2gIR0CmV47PppvhdX2UKGgGR7/Vuh9LHuJDaAdLBGgIR0CmVztcGC7LdX2UKGgGR7/Cpc5bQkX2aAdLAmgIR0CmV+1z6rNodX2UKGgGR7/Mo8ZDRc/uaAdLA2gIR0CmWEj9XLeRdX2UKGgGR7/XV32VVxS6aAdLBGgIR0CmV6L7XQMQdX2UKGgGR7/OXSBshxHYaAdLA2gIR0CmV0v0RODbdX2UKGgGR7/BxffGdZq3aAdLAmgIR0CmWFYGlhw3dX2UKGgGR7/Hc8DB/I8yaAdLA2gIR0CmV/8T8HfNdX2UKGgGR7+4FA3T/hl2aAdLAmgIR0CmWAhJiAlOdX2UKGgGR7/Lv6TGHYYjaAdLA2gIR0CmV7IDgZTAdX2UKGgGR7/O1Q66reZYaAdLA2gIR0CmV1r3bmEHdX2UKGgGR7/Y59Vmz0HyaAdLBGgIR0CmWGvrfLs9dX2UKGgGR7/BG9YfW+XaaAdLAmgIR0CmV754nndPdX2UKGgGR7+hO32EkB0ZaAdLAWgIR0CmWHJKaodddX2UKGgGR7/MLIgeRxLkaAdLA2gIR0CmWBr7fpEAdX2UKGgGR7/VE7W/ag27aAdLBGgIR0CmV3Hjp9qldX2UKGgGR7+y9kBjnV5KaAdLAmgIR0CmWCQ2l2vCdX2UKGgGR7/NP/JeVs1saAdLA2gIR0CmV83Jo0yhdX2UKGgGR7/QevpyIYWMaAdLA2gIR0CmWIAiV0LddX2UKGgGR7+yLYPGyX2NaAdLAmgIR0CmWDAWzniedX2UKGgGR7/OI9kjHGS7aAdLA2gIR0CmV4JZOi35dX2UKGgGR7+6piqhlDneaAdLAmgIR0CmWIwCr92pdX2UKGgGR7/U5IH1OCXhaAdLBGgIR0CmV+HlnyuqdX2UKGgGR7+72RJVbRnfaAdLAmgIR0CmWJQVbiZOdX2UKGgGR7/GLThHbypaaAdLA2gIR0CmWDzBZZB+dX2UKGgGR7+5L5AQg9vCaAdLAmgIR0CmV+pYcNpedX2UKGgGR7/WufVZs9B9aAdLBGgIR0CmV5M67ulXdX2UKGgGR7+15rxiG34LaAdLAmgIR0CmWJ+aa1CxdX2UKGgGR7/AWvbGm1pkaAdLAmgIR0CmWEhfa6BidX2UKGgGR7+fFzdUKiPAaAdLAWgIR0CmWKQSamXPdX2UKGgGR7/AqR2bG3nZaAdLAmgIR0CmV/Zc9nscdX2UKGgGR7+kibDuSfUXaAdLAWgIR0CmV/sMiKR/dX2UKGgGR7/QFvAGjbi7aAdLA2gIR0CmV6PitJWedX2UKGgGR7+5RgqmTC+DaAdLAmgIR0CmWK2mP5pKdX2UKGgGR7/OU0Nz8xbjaAdLA2gIR0CmWFbN8ma6dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8b4c76e1af293301affeb598e9c36681269bb081caf0fd0a3b97d5651fd023b
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b681a77176b51e0f79e1a758adc7a918b80d6c1a6acea4f4d50469f4a5e569d8
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b11f3b1cca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b11f3b16580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696818256258117589, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIRocv3XY774xa6I+nBD/vR1B5T7Dzl2+MJkoP4C4mr8Rwpe/4spyvzlLnD8+cKm/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMViFv+sxur9S6pw/YPUDv39SlT99Kt++ytxgP5SeEL++nFW/ZCedv60IQD++WIi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhGhy/ddjvvjFroj5Y1VK/AwjVv3X6ZD+cEP+9HUHlPsPOXb5HO++/u0vVPxfbsb8wmSg/gLiavxHCl7+ZMRo/eAEWv//txb/iynK/OUucPz5wqb+62HK/e4MeP+wsc7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.6097737 -0.4684483 0.31722406]\n [-0.1245434 0.4477624 -0.21660905]\n [ 0.65858746 -1.2087555 -1.1856099 ]\n [-0.94840825 1.2210456 -1.3237379 ]]", "desired_goal": "[[-1.0417539 -1.4546484 1.2259009 ]\n [-0.5154629 1.1665801 -0.43587103]\n [ 0.878369 -0.5649197 -0.83442295]\n [-1.2277646 0.7501324 -1.0652082 ]]", "observation": "[[-0.6097737 -0.4684483 0.31722406 -0.82356787 -1.664307 0.8944467 ]\n [-0.1245434 0.4477624 -0.21660905 -1.8689965 1.6663736 -1.3894986 ]\n [ 0.65858746 -1.2087555 -1.1856099 0.6023193 -0.5859599 -1.5463256 ]\n [-0.94840825 1.2210456 -1.3237379 -0.9486195 0.61919373 -0.9499042 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE+8UPYrZ5D0UBRs+d1v1PeLT6Lx+/O09zfcvPV1R5z2Yccs9AMAmOykrML3cQSw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03636081 0.11174305 0.15138656]\n [ 0.11980336 -0.02842135 0.11620425]\n [ 0.04296093 0.11294816 0.09933776]\n [ 0.0025444 -0.04300991 0.16821998]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7qmbb1yvLaMAWyUSwKMAXSUR0CmVnGRmseXdX2UKGgGR7/Wf779AHE/aAdLBGgIR0CmV3swDeTFdX2UKGgGR7/Dn9vS+g14aAdLAmgIR0CmVyP8yeqadX2UKGgGR7/S+KTB68g7aAdLA2gIR0CmVs2L5ylvdX2UKGgGR7+pHEuQIUrTaAdLAWgIR0CmV3/Wcz68dX2UKGgGR7+lbRnezlcRaAdLAWgIR0CmVtIC+10DdX2UKGgGR7+ywQlKK509aAdLAmgIR0CmVnqzRhMKdX2UKGgGR7+/TnaFmFrVaAdLAmgIR0CmV4rA57w8dX2UKGgGR7/RNOuaF23baAdLA2gIR0CmVzOmrKeTdX2UKGgGR7/JK/20zCUHaAdLA2gIR0CmVonOKO1fdX2UKGgGR7/YLi++M6zWaAdLBGgIR0CmVuVh1DBudX2UKGgGR7/S1WbPQfITaAdLA2gIR0CmV5d87ZFodX2UKGgGR7/YxsVLzwtraAdLBGgIR0CmV0SCWeH0dX2UKGgGR7/KL4N7SiM6aAdLA2gIR0CmVparvLHNdX2UKGgGR7/AS9M9KVY7aAdLAmgIR0CmV6LonrprdX2UKGgGR7/YzAvcrRShaAdLBGgIR0CmVvoIWxhVdX2UKGgGR7+9Y+0PYnOTaAdLAmgIR0CmVqLELpiadX2UKGgGR7+1fVqesgdPaAdLAmgIR0CmV6x5LRKIdX2UKGgGR7/WKvmozeoDaAdLA2gIR0CmV1UrTYukdX2UKGgGR7/FWQwK0D2baAdLAmgIR0CmV7SksSTRdX2UKGgGR7+zPjXFtKqXaAdLAmgIR0CmV11aOgg6dX2UKGgGR7/QhL5AQg9vaAdLA2gIR0CmVwb6P8yfdX2UKGgGR7/I+ZgG8mKJaAdLA2gIR0CmVq+1jRUndX2UKGgGR7+7W5H3Dej3aAdLAmgIR0CmV8HfMwDedX2UKGgGR7/CYplSS/0vaAdLAmgIR0CmVxQP7N0OdX2UKGgGR7/UyTpxFRYSaAdLA2gIR0CmVsBzV+ZxdX2UKGgGR7/X7MPjGT9saAdLBGgIR0CmV3K3/givdX2UKGgGR7/UdyDIzWPMaAdLA2gIR0CmV84wyqMndX2UKGgGR7/Rtnwob4rSaAdLA2gIR0CmVyDAzpHJdX2UKGgGR7++rp7kXDWLaAdLAmgIR0CmVsmgzxgBdX2UKGgGR7+76dlNDc/MaAdLAmgIR0CmV340VJtjdX2UKGgGR7+lpKzzErGzaAdLAWgIR0CmVyeu3c59dX2UKGgGR7+9oJzDGcWkaAdLAmgIR0CmVtRA0KqodX2UKGgGR7/Wm9g4OtnxaAdLA2gIR0CmV93R5TqCdX2UKGgGR7/AJVsDW9UTaAdLAmgIR0CmVy/ek56udX2UKGgGR7+YD9wWFev7aAdLAWgIR0CmVth1klNUdX2UKGgGR7/NS7Xg9/z8aAdLA2gIR0CmV4qyOaOQdX2UKGgGR7/BK28Zk079aAdLAmgIR0CmVzhvBJqZdX2UKGgGR7/H3PiT+vQoaAdLA2gIR0CmVufJmukldX2UKGgGR7/ZinYQJ5VwaAdLBGgIR0CmV/F3Y+SsdX2UKGgGR7/QvcJtzjm0aAdLA2gIR0CmV5o0IkZ8dX2UKGgGR7+m0gKWszVMaAdLAWgIR0CmV/WugYgrdX2UKGgGR7/RY0EX+ERKaAdLBGgIR0CmV0vNeMQ3dX2UKGgGR7/L9rGipNsWaAdLA2gIR0CmVvSDIzWPdX2UKGgGR7+46mwaBI4EaAdLAmgIR0CmV/4cWCVbdX2UKGgGR7+fnSv1UVBVaAdLAWgIR0CmVvmlQ/HHdX2UKGgGR7/VExIre67NaAdLBGgIR0CmV66ttALRdX2UKGgGR7+xBeHBUJfIaAdLAmgIR0CmV1hB7eEadX2UKGgGR7+4BZIQOFxoaAdLAmgIR0CmVwTKDCgsdX2UKGgGR7/RJo0ygwoLaAdLA2gIR0CmWA5+x4Y8dX2UKGgGR7+9wdbPhQ3xaAdLAmgIR0CmV7c5jpcHdX2UKGgGR7+6apgkTpPiaAdLAmgIR0CmV2DmbLEDdX2UKGgGR7+l0vGp++dtaAdLAWgIR0CmVwmOMl1KdX2UKGgGR7+5XaJyhi9aaAdLAmgIR0CmWBcxbjcVdX2UKGgGR7++xptaY/mlaAdLAmgIR0CmV2myon8bdX2UKGgGR7/ObG3nZCfIaAdLA2gIR0CmV8e+/QBxdX2UKGgGR7+bDl5nlGPQaAdLAWgIR0CmV3GOMl1KdX2UKGgGR7/RdPci4axYaAdLA2gIR0CmVxqZc9nsdX2UKGgGR7++S+xnnMdMaAdLAmgIR0CmV9DEm6XjdX2UKGgGR7/YIBBAv+OwaAdLBGgIR0CmWCyPluFYdX2UKGgGR7+d52Qnx8UmaAdLAWgIR0CmV9VG9YfXdX2UKGgGR7/HV9Wp6yB1aAdLA2gIR0CmV37aAWi2dX2UKGgGR7/Iqfe1rqMWaAdLA2gIR0CmVyflIVdpdX2UKGgGR7/G+8Gs3hn8aAdLA2gIR0CmWDwLux8ldX2UKGgGR7/Tv8ZUDMePaAdLA2gIR0CmV+T8YQ8PdX2UKGgGR7/KdkJ8fFJhaAdLA2gIR0CmV47PppvhdX2UKGgGR7/Vuh9LHuJDaAdLBGgIR0CmVztcGC7LdX2UKGgGR7/Cpc5bQkX2aAdLAmgIR0CmV+1z6rNodX2UKGgGR7/Mo8ZDRc/uaAdLA2gIR0CmWEj9XLeRdX2UKGgGR7/XV32VVxS6aAdLBGgIR0CmV6L7XQMQdX2UKGgGR7/OXSBshxHYaAdLA2gIR0CmV0v0RODbdX2UKGgGR7/BxffGdZq3aAdLAmgIR0CmWFYGlhw3dX2UKGgGR7/Hc8DB/I8yaAdLA2gIR0CmV/8T8HfNdX2UKGgGR7+4FA3T/hl2aAdLAmgIR0CmWAhJiAlOdX2UKGgGR7/Lv6TGHYYjaAdLA2gIR0CmV7IDgZTAdX2UKGgGR7/O1Q66reZYaAdLA2gIR0CmV1r3bmEHdX2UKGgGR7/Y59Vmz0HyaAdLBGgIR0CmWGvrfLs9dX2UKGgGR7/BG9YfW+XaaAdLAmgIR0CmV754nndPdX2UKGgGR7+hO32EkB0ZaAdLAWgIR0CmWHJKaodddX2UKGgGR7/MLIgeRxLkaAdLA2gIR0CmWBr7fpEAdX2UKGgGR7/VE7W/ag27aAdLBGgIR0CmV3Hjp9qldX2UKGgGR7+y9kBjnV5KaAdLAmgIR0CmWCQ2l2vCdX2UKGgGR7/NP/JeVs1saAdLA2gIR0CmV83Jo0yhdX2UKGgGR7/QevpyIYWMaAdLA2gIR0CmWIAiV0LddX2UKGgGR7+yLYPGyX2NaAdLAmgIR0CmWDAWzniedX2UKGgGR7/OI9kjHGS7aAdLA2gIR0CmV4JZOi35dX2UKGgGR7+6piqhlDneaAdLAmgIR0CmWIwCr92pdX2UKGgGR7/U5IH1OCXhaAdLBGgIR0CmV+HlnyuqdX2UKGgGR7+72RJVbRnfaAdLAmgIR0CmWJQVbiZOdX2UKGgGR7/GLThHbypaaAdLA2gIR0CmWDzBZZB+dX2UKGgGR7+5L5AQg9vCaAdLAmgIR0CmV+pYcNpedX2UKGgGR7/WufVZs9B9aAdLBGgIR0CmV5M67ulXdX2UKGgGR7+15rxiG34LaAdLAmgIR0CmWJ+aa1CxdX2UKGgGR7/AWvbGm1pkaAdLAmgIR0CmWEhfa6BidX2UKGgGR7+fFzdUKiPAaAdLAWgIR0CmWKQSamXPdX2UKGgGR7/AqR2bG3nZaAdLAmgIR0CmV/Zc9nscdX2UKGgGR7+kibDuSfUXaAdLAWgIR0CmV/sMiKR/dX2UKGgGR7/QFvAGjbi7aAdLA2gIR0CmV6PitJWedX2UKGgGR7+5RgqmTC+DaAdLAmgIR0CmWK2mP5pKdX2UKGgGR7/OU0Nz8xbjaAdLA2gIR0CmWFbN8ma6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (690 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.17746336087584497, "std_reward": 0.06068855969533168, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-09T03:12:54.408061"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8aa5b449f301d21bdd966685287f8a0e83867d7e150ce5c5474fcf1870905c4
3
+ size 2623