Update handler.py
Browse files- handler.py +169 -174
handler.py
CHANGED
@@ -37,201 +37,196 @@ limitation = os.getenv("SYSTEM") == "spaces"
|
|
37 |
|
38 |
config = Config()
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
# RVC models
|
45 |
-
model_root = "weights"
|
46 |
-
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
|
47 |
-
models.sort()
|
48 |
|
49 |
-
def get_unique_filename(extension):
|
50 |
-
|
51 |
|
52 |
-
def model_data(model_name):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
-
net_g =
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
-
|
75 |
-
|
76 |
-
raise ValueError("Unknown version")
|
77 |
-
del net_g.enc_q
|
78 |
-
net_g.load_state_dict(cpt["weight"], strict=False)
|
79 |
-
print("Model loaded")
|
80 |
-
net_g.eval().to(config.device)
|
81 |
-
if config.is_half:
|
82 |
-
net_g = net_g.half()
|
83 |
-
else:
|
84 |
-
net_g = net_g.float()
|
85 |
-
vc = VC(tgt_sr, config)
|
86 |
-
# n_spk = cpt["config"][-3]
|
87 |
|
88 |
-
|
89 |
-
f"{model_root}/{model_name}/{f}"
|
90 |
-
for f in os.listdir(f"{model_root}/{model_name}")
|
91 |
-
if f.endswith(".index")
|
92 |
-
]
|
93 |
-
if len(index_files) == 0:
|
94 |
-
print("No index file found")
|
95 |
-
index_file = ""
|
96 |
-
else:
|
97 |
-
index_file = index_files[0]
|
98 |
-
print(f"Index file found: {index_file}")
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
|
102 |
|
103 |
-
def
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
else:
|
114 |
-
hubert_model = hubert_model.float()
|
115 |
-
return hubert_model.eval()
|
116 |
|
117 |
-
|
118 |
-
model_root = "weights" # Assuming this is where your models are stored
|
119 |
-
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
edge_time = 0 # Initialize edge_time
|
131 |
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
if use_uploaded_voice:
|
136 |
-
if uploaded_voice is None:
|
137 |
-
return "No voice file uploaded.", None, None
|
138 |
-
|
139 |
-
# Process the uploaded voice file
|
140 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
141 |
-
tmp_file.write(uploaded_voice)
|
142 |
-
uploaded_file_path = tmp_file.name
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
if limitation and
|
148 |
return (
|
149 |
-
f"
|
150 |
None,
|
151 |
None,
|
152 |
)
|
153 |
-
|
154 |
-
# Invoke Edge TTS
|
155 |
-
t0 = time.time()
|
156 |
-
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
|
157 |
-
edge_tts.Communicate(tts_text, tts_voice, rate=speed_str).save(edge_output_filename)
|
158 |
-
t1 = time.time()
|
159 |
-
edge_time = t1 - t0
|
160 |
|
161 |
-
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
None,
|
171 |
)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
net_g,
|
185 |
-
0,
|
186 |
-
audio,
|
187 |
-
edge_output_filename if not use_uploaded_voice else uploaded_file_path,
|
188 |
-
times,
|
189 |
-
f0_up_key,
|
190 |
-
f0_method,
|
191 |
-
index_file,
|
192 |
-
index_rate,
|
193 |
-
if_f0,
|
194 |
-
filter_radius,
|
195 |
-
tgt_sr,
|
196 |
-
resample_sr,
|
197 |
-
rms_mix_rate,
|
198 |
-
version,
|
199 |
-
protect,
|
200 |
-
None,
|
201 |
-
)
|
202 |
-
|
203 |
-
if tgt_sr != resample_sr and resample_sr >= 16000:
|
204 |
-
tgt_sr = resample_sr
|
205 |
-
|
206 |
-
info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
|
207 |
-
print(info)
|
208 |
-
return (
|
209 |
-
info,
|
210 |
-
edge_output_filename if not use_uploaded_voice else None,
|
211 |
-
(tgt_sr, audio_opt),
|
212 |
-
edge_output_filename
|
213 |
-
)
|
214 |
-
|
215 |
-
except EOFError:
|
216 |
-
info = "Output not valid. This may occur when input text and speaker do not match."
|
217 |
-
print(info)
|
218 |
-
return info, None, None
|
219 |
-
except Exception as e:
|
220 |
-
traceback_info = traceback.format_exc()
|
221 |
-
print(traceback_info)
|
222 |
-
return str(e), None, None
|
223 |
-
|
224 |
-
voice_mapping = {
|
225 |
-
"Mongolian Male": "mn-MN-BataaNeural",
|
226 |
-
"Mongolian Female": "mn-MN-YesuiNeural"
|
227 |
-
}
|
228 |
-
|
229 |
-
hubert_model = load_hubert()
|
230 |
-
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
237 |
try:
|
@@ -265,11 +260,11 @@ class EndpointHandler:
|
|
265 |
use_uploaded_voice = json_data["use_uploaded_voice"]
|
266 |
voice_upload_file = json_data.get("voice_upload_file", None)
|
267 |
|
268 |
-
edge_tts_voice = voice_mapping.get(selected_voice)
|
269 |
if not edge_tts_voice:
|
270 |
raise ValueError(f"Invalid voice '{selected_voice}'.")
|
271 |
|
272 |
-
info, edge_tts_output_path, tts_output_data, edge_output_file = tts(
|
273 |
model_name,
|
274 |
tts_text,
|
275 |
edge_tts_voice,
|
@@ -299,6 +294,6 @@ class EndpointHandler:
|
|
299 |
raise ValueError("Invalid JSON structure.")
|
300 |
|
301 |
def save_audio_data_to_file(self, audio_data, sample_rate=40000):
|
302 |
-
file_path = get_unique_filename('wav')
|
303 |
wavfile.write(file_path, sample_rate, audio_data)
|
304 |
return file_path
|
|
|
37 |
|
38 |
config = Config()
|
39 |
|
40 |
+
class EndpointHandler:
|
41 |
+
def __init__(self, model_dir=None):
|
42 |
+
self.model_dir = model_dir
|
43 |
+
self.hubert_model = self.load_hubert()
|
44 |
+
self.rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
|
45 |
+
self.voice_mapping = {
|
46 |
+
"Mongolian Male": "mn-MN-BataaNeural",
|
47 |
+
"Mongolian Female": "mn-MN-YesuiNeural"
|
48 |
+
}
|
49 |
+
# Edge TTS
|
50 |
+
self.tts_voice_list = edge_tts.list_voices()
|
51 |
+
self.tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
|
52 |
|
53 |
+
# RVC models
|
54 |
+
self.model_root = "weights"
|
55 |
+
self.models = [d for d in os.listdir(self.model_root) if os.path.isdir(f"{self.model_root}/{d}")]
|
56 |
+
self.models.sort()
|
57 |
|
58 |
+
def get_unique_filename(self, extension):
|
59 |
+
return f"{uuid.uuid4()}.{extension}"
|
60 |
|
61 |
+
def model_data(self, model_name):
|
62 |
+
# global n_spk, tgt_sr, net_g, vc, cpt, version, index_file
|
63 |
+
pth_path = [
|
64 |
+
f"{self.model_root}/{model_name}/{f}"
|
65 |
+
for f in os.listdir(f"{self.model_root}/{model_name}")
|
66 |
+
if f.endswith(".pth")
|
67 |
+
][0]
|
68 |
+
print(f"Loading {pth_path}")
|
69 |
+
cpt = torch.load(pth_path, map_location="cpu")
|
70 |
+
tgt_sr = cpt["config"][-1]
|
71 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
72 |
+
if_f0 = cpt.get("f0", 1)
|
73 |
+
version = cpt.get("version", "v1")
|
74 |
+
if version == "v1":
|
75 |
+
if if_f0 == 1:
|
76 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
77 |
+
else:
|
78 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
79 |
+
elif version == "v2":
|
80 |
+
if if_f0 == 1:
|
81 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
82 |
+
else:
|
83 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
84 |
+
else:
|
85 |
+
raise ValueError("Unknown version")
|
86 |
+
del net_g.enc_q
|
87 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
88 |
+
print("Model loaded")
|
89 |
+
net_g.eval().to(config.device)
|
90 |
+
if config.is_half:
|
91 |
+
net_g = net_g.half()
|
92 |
else:
|
93 |
+
net_g = net_g.float()
|
94 |
+
vc = VC(tgt_sr, config)
|
95 |
+
# n_spk = cpt["config"][-3]
|
96 |
+
|
97 |
+
index_files = [
|
98 |
+
f"{self.model_root}/{model_name}/{f}"
|
99 |
+
for f in os.listdir(f"{self.model_root}/{model_name}")
|
100 |
+
if f.endswith(".index")
|
101 |
+
]
|
102 |
+
if len(index_files) == 0:
|
103 |
+
print("No index file found")
|
104 |
+
index_file = ""
|
105 |
else:
|
106 |
+
index_file = index_files[0]
|
107 |
+
print(f"Index file found: {index_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
return tgt_sr, net_g, vc, version, index_file, if_f0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
def load_hubert(self):
|
112 |
+
# global hubert_model
|
113 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
114 |
+
["hubert_base.pt"],
|
115 |
+
suffix="",
|
116 |
+
)
|
117 |
+
hubert_model = models[0]
|
118 |
+
hubert_model = hubert_model.to(config.device)
|
119 |
+
if config.is_half:
|
120 |
+
hubert_model = hubert_model.half()
|
121 |
+
else:
|
122 |
+
hubert_model = hubert_model.float()
|
123 |
+
return hubert_model.eval()
|
124 |
|
125 |
+
def get_model_names(self):
|
126 |
+
return [d for d in os.listdir(self.model_root) if os.path.isdir(f"{self.model_root}/{d}")]
|
127 |
|
128 |
+
def tts(self, model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice):
|
129 |
+
# Default values for parameters used in EdgeTTS
|
130 |
+
speed = 0 # Default speech speed
|
131 |
+
f0_up_key = 0 # Default pitch adjustment
|
132 |
+
f0_method = "rmvpe" # Default pitch extraction method
|
133 |
+
protect = 0.33 # Default protect value
|
134 |
+
filter_radius = 3
|
135 |
+
resample_sr = 0
|
136 |
+
rms_mix_rate = 0.25
|
137 |
+
edge_time = 0 # Initialize edge_time
|
|
|
|
|
|
|
138 |
|
139 |
+
edge_output_filename = self.get_unique_filename("mp3")
|
|
|
|
|
140 |
|
141 |
+
try:
|
142 |
+
if use_uploaded_voice:
|
143 |
+
if uploaded_voice is None:
|
144 |
+
return "No voice file uploaded.", None, None
|
145 |
+
|
146 |
+
# Process the uploaded voice file
|
147 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
148 |
+
tmp_file.write(uploaded_voice)
|
149 |
+
uploaded_file_path = tmp_file.name
|
|
|
150 |
|
151 |
+
audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
|
152 |
+
else:
|
153 |
+
# EdgeTTS processing
|
154 |
+
if limitation and len(tts_text) > 4000:
|
155 |
+
return (
|
156 |
+
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.",
|
157 |
+
None,
|
158 |
+
None,
|
159 |
+
)
|
160 |
+
|
161 |
+
# Invoke Edge TTS
|
162 |
+
t0 = time.time()
|
163 |
+
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
|
164 |
+
edge_tts.Communicate(tts_text, tts_voice, rate=speed_str).save(edge_output_filename)
|
165 |
+
t1 = time.time()
|
166 |
+
edge_time = t1 - t0
|
167 |
|
168 |
+
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Common processing after loading the audio
|
171 |
+
duration = len(audio) / sr
|
172 |
+
print(f"Audio duration: {duration}s")
|
173 |
+
if limitation and duration >= 20:
|
174 |
return (
|
175 |
+
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
|
176 |
None,
|
177 |
None,
|
178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
f0_up_key = int(f0_up_key)
|
181 |
+
tgt_sr, net_g, vc, version, index_file, if_f0 = self.model_data(model_name)
|
182 |
|
183 |
+
# Setup for RMVPE or other pitch extraction methods
|
184 |
+
if f0_method == "rmvpe":
|
185 |
+
vc.model_rmvpe = self.rmvpe_model
|
186 |
+
|
187 |
+
# Perform voice conversion pipeline
|
188 |
+
times = [0, 0, 0]
|
189 |
+
audio_opt = vc.pipeline(
|
190 |
+
self.hubert_model,
|
191 |
+
net_g,
|
192 |
+
0,
|
193 |
+
audio,
|
194 |
+
edge_output_filename if not use_uploaded_voice else uploaded_file_path,
|
195 |
+
times,
|
196 |
+
f0_up_key,
|
197 |
+
f0_method,
|
198 |
+
index_file,
|
199 |
+
index_rate,
|
200 |
+
if_f0,
|
201 |
+
filter_radius,
|
202 |
+
tgt_sr,
|
203 |
+
resample_sr,
|
204 |
+
rms_mix_rate,
|
205 |
+
version,
|
206 |
+
protect,
|
207 |
None,
|
208 |
)
|
209 |
|
210 |
+
if tgt_sr != resample_sr and resample_sr >= 16000:
|
211 |
+
tgt_sr = resample_sr
|
212 |
+
|
213 |
+
info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
|
214 |
+
print(info)
|
215 |
+
return (
|
216 |
+
info,
|
217 |
+
edge_output_filename if not use_uploaded_voice else None,
|
218 |
+
(tgt_sr, audio_opt),
|
219 |
+
edge_output_filename
|
220 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
except EOFError:
|
223 |
+
info = "Output not valid. This may occur when input text and speaker do not match."
|
224 |
+
print(info)
|
225 |
+
return info, None, None
|
226 |
+
except Exception as e:
|
227 |
+
traceback_info = traceback.format_exc()
|
228 |
+
print(traceback_info)
|
229 |
+
return str(e), None, None
|
230 |
|
231 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
232 |
try:
|
|
|
260 |
use_uploaded_voice = json_data["use_uploaded_voice"]
|
261 |
voice_upload_file = json_data.get("voice_upload_file", None)
|
262 |
|
263 |
+
edge_tts_voice = self.voice_mapping.get(selected_voice)
|
264 |
if not edge_tts_voice:
|
265 |
raise ValueError(f"Invalid voice '{selected_voice}'.")
|
266 |
|
267 |
+
info, edge_tts_output_path, tts_output_data, edge_output_file = self.tts(
|
268 |
model_name,
|
269 |
tts_text,
|
270 |
edge_tts_voice,
|
|
|
294 |
raise ValueError("Invalid JSON structure.")
|
295 |
|
296 |
def save_audio_data_to_file(self, audio_data, sample_rate=40000):
|
297 |
+
file_path = self.get_unique_filename('wav')
|
298 |
wavfile.write(file_path, sample_rate, audio_data)
|
299 |
return file_path
|