Create handler.py
Browse files- handler.py +86 -0
handler.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from environs import Env
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
import numpy as np
|
7 |
+
import librosa
|
8 |
+
from scipy.io import wavfile
|
9 |
+
import asyncio
|
10 |
+
|
11 |
+
class EndpointHandler:
|
12 |
+
def __init__(self, model_dir=None):
|
13 |
+
self.model_dir = model_dir
|
14 |
+
|
15 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
16 |
+
try:
|
17 |
+
# Extract the actual input data from the "inputs" field
|
18 |
+
if "inputs" in data:
|
19 |
+
json_data = data["inputs"]
|
20 |
+
else:
|
21 |
+
json_data = data
|
22 |
+
|
23 |
+
# Clone the repository if it's not already cloned
|
24 |
+
repo_dir = "TTS_Mongolian"
|
25 |
+
if not os.path.exists(repo_dir):
|
26 |
+
repo_url = "https://huggingface.co/mazalaai/TTS_Mongolian.git"
|
27 |
+
os.system(f"git clone {repo_url}")
|
28 |
+
|
29 |
+
# Change directory to the repository
|
30 |
+
os.chdir(repo_dir)
|
31 |
+
|
32 |
+
# Import the voice_processing module and functions
|
33 |
+
from voice_processing import tts, get_model_names, voice_mapping, get_unique_filename
|
34 |
+
|
35 |
+
return self.process_json_input(json_data)
|
36 |
+
except ValueError as e:
|
37 |
+
return {"error": str(e)}
|
38 |
+
except Exception as e:
|
39 |
+
return {"error": str(e)}
|
40 |
+
|
41 |
+
def process_json_input(self, json_data):
|
42 |
+
if all(key in json_data for key in ["model_name", "tts_text", "selected_voice", "slang_rate", "use_uploaded_voice"]):
|
43 |
+
model_name = json_data["model_name"]
|
44 |
+
tts_text = json_data["tts_text"]
|
45 |
+
selected_voice = json_data["selected_voice"]
|
46 |
+
slang_rate = json_data["slang_rate"]
|
47 |
+
use_uploaded_voice = json_data["use_uploaded_voice"]
|
48 |
+
voice_upload_file = json_data.get("voice_upload_file", None)
|
49 |
+
|
50 |
+
edge_tts_voice = voice_mapping.get(selected_voice)
|
51 |
+
if not edge_tts_voice:
|
52 |
+
raise ValueError(f"Invalid voice '{selected_voice}'.")
|
53 |
+
|
54 |
+
info, edge_tts_output_path, tts_output_data, edge_output_file = asyncio.run(tts(
|
55 |
+
model_name,
|
56 |
+
tts_text,
|
57 |
+
edge_tts_voice,
|
58 |
+
slang_rate,
|
59 |
+
use_uploaded_voice,
|
60 |
+
voice_upload_file
|
61 |
+
))
|
62 |
+
|
63 |
+
if edge_output_file and os.path.exists(edge_output_file):
|
64 |
+
os.remove(edge_output_file)
|
65 |
+
|
66 |
+
_, audio_output = tts_output_data
|
67 |
+
audio_file_path = self.save_audio_data_to_file(audio_output) if isinstance(audio_output, np.ndarray) else audio_output
|
68 |
+
|
69 |
+
try:
|
70 |
+
with open(audio_file_path, 'rb') as file:
|
71 |
+
audio_bytes = file.read()
|
72 |
+
audio_data_uri = f"data:audio/wav;base64,{base64.b64encode(audio_bytes).decode('utf-8')}"
|
73 |
+
except Exception as e:
|
74 |
+
raise Exception(f"Failed to read audio file: {e}")
|
75 |
+
finally:
|
76 |
+
if os.path.exists(audio_file_path):
|
77 |
+
os.remove(audio_file_path)
|
78 |
+
|
79 |
+
return {"info": info, "audio_data_uri": audio_data_uri}
|
80 |
+
else:
|
81 |
+
raise ValueError("Invalid JSON structure.")
|
82 |
+
|
83 |
+
def save_audio_data_to_file(self, audio_data, sample_rate=40000):
|
84 |
+
file_path = get_unique_filename('wav')
|
85 |
+
wavfile.write(file_path, sample_rate, audio_data)
|
86 |
+
return file_path
|