TTS_Mongolian / voice_processing.py
Vijish's picture
Update voice_processing.py
05763cf verified
raw
history blame
7.29 kB
import datetime
import logging
import os
import time
import traceback
import tempfile
import edge_tts
import librosa
import torch
from fairseq import checkpoint_utils
import uuid
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS
tts_voice_list = edge_tts.list_voices()
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
# RVC models
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def get_unique_filename(extension):
return f"{uuid.uuid4()}.{extension}"
def model_data(model_name):
# global n_spk, tgt_sr, net_g, vc, cpt, version, index_file
pth_path = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".pth")
][0]
print(f"Loading {pth_path}")
cpt = torch.load(pth_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
else:
raise ValueError("Unknown version")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
print("Model loaded")
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
# n_spk = cpt["config"][-3]
index_files = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".index")
]
if len(index_files) == 0:
print("No index file found")
index_file = ""
else:
index_file = index_files[0]
print(f"Index file found: {index_file}")
return tgt_sr, net_g, vc, version, index_file, if_f0
def load_hubert():
# global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
def get_model_names():
model_root = "weights" # Assuming this is where your models are stored
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
def tts(
model_name,
tts_text,
tts_voice,
index_rate,
use_uploaded_voice,
uploaded_voice,
):
# Default values for parameters used in EdgeTTS
speed = 0 # Default speech speed
f0_up_key = 0 # Default pitch adjustment
f0_method = "rmvpe" # Default pitch extraction method
protect = 0.33 # Default protect value
filter_radius = 3
resample_sr = 0
rms_mix_rate = 0.25
edge_time = 0 # Initialize edge_time
edge_output_filename = get_unique_filename("mp3")
try:
if use_uploaded_voice:
if uploaded_voice is None:
return "No voice file uploaded.", None, None
# Process the uploaded voice file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(uploaded_voice)
uploaded_file_path = tmp_file.name
#uploaded_file_path = uploaded_voice.name
audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
else:
# EdgeTTS processing
if limitation and len(tts_text) > 4000:
return (
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.",
None,
None,
)
# Invoke Edge TTS
t0 = time.time()
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
edge_tts.Communicate(
tts_text, tts_voice, rate=speed_str
).save(edge_output_filename)
t1 = time.time()
edge_time = t1 - t0
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
# Common processing after loading the audio
duration = len(audio) / sr
print(f"Audio duration: {duration}s")
if limitation and duration >= 20:
return (
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
None,
None,
)
f0_up_key = int(f0_up_key)
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
# Setup for RMVPE or other pitch extraction methods
if f0_method == "rmvpe":
vc.model_rmvpe = rmvpe_model
# Perform voice conversion pipeline
times = [0, 0, 0]
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
edge_output_filename if not use_uploaded_voice else uploaded_file_path,
times,
f0_up_key,
f0_method,
index_file,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
None,
)
if tgt_sr != resample_sr and resample_sr >= 16000:
tgt_sr = resample_sr
info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
print(info)
return (
info,
edge_output_filename if not use_uploaded_voice else None,
(tgt_sr, audio_opt),
edge_output_filename
)
except EOFError:
info = (
"output not valid. This may occur when input text and speaker do not match."
)
print(info)
return info, None, None
except Exception as e:
traceback_info = traceback.format_exc()
print(traceback_info)
return str(e), None, None
voice_mapping = {
"Mongolian Male": "mn-MN-BataaNeural",
"Mongolian Female": "mn-MN-YesuiNeural"
}
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)