|
import asyncio |
|
import datetime |
|
import logging |
|
import os |
|
import time |
|
import traceback |
|
import tempfile |
|
|
|
import edge_tts |
|
import librosa |
|
import torch |
|
from fairseq import checkpoint_utils |
|
import uuid |
|
|
|
from config import Config |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from rmvpe import RMVPE |
|
from vc_infer_pipeline import VC |
|
|
|
|
|
logging.getLogger("fairseq").setLevel(logging.WARNING) |
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
logging.getLogger("markdown_it").setLevel(logging.WARNING) |
|
logging.getLogger("urllib3").setLevel(logging.WARNING) |
|
logging.getLogger("matplotlib").setLevel(logging.WARNING) |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
config = Config() |
|
|
|
|
|
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) |
|
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] |
|
|
|
|
|
model_root = "weights" |
|
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")] |
|
models.sort() |
|
|
|
def get_unique_filename(extension): |
|
return f"{uuid.uuid4()}.{extension}" |
|
|
|
|
|
|
|
|
|
|
|
def model_data(model_name): |
|
|
|
pth_path = [ |
|
f"{model_root}/{model_name}/{f}" |
|
for f in os.listdir(f"{model_root}/{model_name}") |
|
if f.endswith(".pth") |
|
][0] |
|
print(f"Loading {pth_path}") |
|
cpt = torch.load(pth_path, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
else: |
|
raise ValueError("Unknown version") |
|
del net_g.enc_q |
|
net_g.load_state_dict(cpt["weight"], strict=False) |
|
print("Model loaded") |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
|
|
|
|
index_files = [ |
|
f"{model_root}/{model_name}/{f}" |
|
for f in os.listdir(f"{model_root}/{model_name}") |
|
if f.endswith(".index") |
|
] |
|
if len(index_files) == 0: |
|
print("No index file found") |
|
index_file = "" |
|
else: |
|
index_file = index_files[0] |
|
print(f"Index file found: {index_file}") |
|
|
|
return tgt_sr, net_g, vc, version, index_file, if_f0 |
|
|
|
|
|
def load_hubert(): |
|
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
return hubert_model.eval() |
|
|
|
def get_model_names(): |
|
model_root = "weights" |
|
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")] |
|
|
|
async def tts( |
|
model_name, |
|
tts_text, |
|
tts_voice, |
|
index_rate, |
|
use_uploaded_voice, |
|
uploaded_voice, |
|
): |
|
|
|
speed = 0 |
|
f0_up_key = 0 |
|
f0_method = "rmvpe" |
|
protect = 0.33 |
|
filter_radius = 3 |
|
resample_sr = 0 |
|
rms_mix_rate = 0.25 |
|
edge_time = 0 |
|
|
|
edge_output_filename = get_unique_filename("mp3") |
|
|
|
|
|
try: |
|
if use_uploaded_voice: |
|
if uploaded_voice is None: |
|
return "No voice file uploaded.", None, None |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_file.write(uploaded_voice) |
|
uploaded_file_path = tmp_file.name |
|
|
|
|
|
audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True) |
|
else: |
|
|
|
if limitation and len(tts_text) > 4000: |
|
return ( |
|
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.", |
|
None, |
|
None, |
|
) |
|
|
|
|
|
t0 = time.time() |
|
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%" |
|
await edge_tts.Communicate( |
|
tts_text, tts_voice, rate=speed_str |
|
).save(edge_output_filename) |
|
t1 = time.time() |
|
edge_time = t1 - t0 |
|
|
|
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True) |
|
|
|
|
|
duration = len(audio) / sr |
|
print(f"Audio duration: {duration}s") |
|
if limitation and duration >= 20: |
|
return ( |
|
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.", |
|
None, |
|
None, |
|
) |
|
|
|
f0_up_key = int(f0_up_key) |
|
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name) |
|
|
|
|
|
if f0_method == "rmvpe": |
|
vc.model_rmvpe = rmvpe_model |
|
|
|
|
|
times = [0, 0, 0] |
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
0, |
|
audio, |
|
edge_output_filename if not use_uploaded_voice else uploaded_file_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
index_file, |
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
None, |
|
) |
|
|
|
if tgt_sr != resample_sr and resample_sr >= 16000: |
|
tgt_sr = resample_sr |
|
|
|
info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s" |
|
print(info) |
|
return ( |
|
info, |
|
edge_output_filename if not use_uploaded_voice else None, |
|
(tgt_sr, audio_opt), |
|
edge_output_filename |
|
) |
|
|
|
except EOFError: |
|
info = ( |
|
"output not valid. This may occur when input text and speaker do not match." |
|
) |
|
print(info) |
|
return info, None, None |
|
except Exception as e: |
|
traceback_info = traceback.format_exc() |
|
print(traceback_info) |
|
return str(e), None, None |
|
|
|
|
|
voice_mapping = { |
|
"Mongolian Male": "mn-MN-BataaNeural", |
|
"Mongolian Female": "mn-MN-YesuiNeural" |
|
} |
|
|
|
|
|
|
|
hubert_model = load_hubert() |
|
|
|
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) |
|
|
|
|
|
|
|
|