|
from pydantic import BaseModel |
|
from environs import Env |
|
from typing import List, Dict, Any |
|
import os |
|
import base64 |
|
import numpy as np |
|
import librosa |
|
from scipy.io import wavfile |
|
import shutil |
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir=None): |
|
self.model_dir = model_dir |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
try: |
|
|
|
repo_url = "https://huggingface.co/mazalaai/TTS_Mongolian.git" |
|
os.system(f"git clone {repo_url}") |
|
|
|
|
|
repo_dir = "TTS_Mongolian" |
|
lib_dir = os.path.join(repo_dir, "lib") |
|
libb_dir = os.path.join(repo_dir, "libb") |
|
if os.path.exists(lib_dir): |
|
os.rename(lib_dir, libb_dir) |
|
|
|
weights_dir = os.path.join(repo_dir, "weights") |
|
weights2_dir = os.path.join(repo_dir, "weights2") |
|
if os.path.exists(weights_dir): |
|
os.rename(weights_dir, weights2_dir) |
|
|
|
|
|
dest_dir = "/repository" |
|
for item in os.listdir(repo_dir): |
|
item_path = os.path.join(repo_dir, item) |
|
if os.path.isfile(item_path): |
|
shutil.copy(item_path, dest_dir) |
|
elif os.path.isdir(item_path): |
|
shutil.copytree(item_path, os.path.join(dest_dir, item)) |
|
|
|
|
|
from voice_processing import tts, get_model_names, voice_mapping, get_unique_filename |
|
|
|
if "inputs" in data: |
|
|
|
return self.process_hf_input(data) |
|
else: |
|
return self.process_json_input(data) |
|
|
|
except ValueError as e: |
|
return {"error": str(e)} |
|
except Exception as e: |
|
return {"error": str(e)} |
|
finally: |
|
|
|
if os.path.exists(repo_dir): |
|
shutil.rmtree(repo_dir) |
|
for item in os.listdir(dest_dir): |
|
if item.startswith("TTS_Mongolian"): |
|
item_path = os.path.join(dest_dir, item) |
|
if os.path.isfile(item_path): |
|
os.remove(item_path) |
|
elif os.path.isdir(item_path): |
|
shutil.rmtree(item_path) |
|
|
|
def process_json_input(self, json_data): |
|
if all(key in json_data for key in ["model_name", "tts_text", "selected_voice", "slang_rate", "use_uploaded_voice"]): |
|
model_name = json_data["model_name"] |
|
tts_text = json_data["tts_text"] |
|
selected_voice = json_data["selected_voice"] |
|
slang_rate = json_data["slang_rate"] |
|
use_uploaded_voice = json_data["use_uploaded_voice"] |
|
voice_upload_file = json_data.get("voice_upload_file", None) |
|
|
|
edge_tts_voice = voice_mapping.get(selected_voice) |
|
if not edge_tts_voice: |
|
raise ValueError(f"Invalid voice '{selected_voice}'.") |
|
|
|
info, edge_tts_output_path, tts_output_data, edge_output_file = tts( |
|
model_name, tts_text, edge_tts_voice, slang_rate, use_uploaded_voice, voice_upload_file |
|
) |
|
|
|
if edge_output_file and os.path.exists(edge_output_file): |
|
os.remove(edge_output_file) |
|
|
|
_, audio_output = tts_output_data |
|
audio_file_path = self.save_audio_data_to_file(audio_output) if isinstance(audio_output, np.ndarray) else audio_output |
|
|
|
try: |
|
with open(audio_file_path, 'rb') as file: |
|
audio_bytes = file.read() |
|
audio_data_uri = f"data:audio/wav;base64,{base64.b64encode(audio_bytes).decode('utf-8')}" |
|
except Exception as e: |
|
raise Exception(f"Failed to read audio file: {e}") |
|
finally: |
|
if os.path.exists(audio_file_path): |
|
os.remove(audio_file_path) |
|
|
|
return {"info": info, "audio_data_uri": audio_data_uri} |
|
else: |
|
raise ValueError("Invalid JSON structure.") |
|
|
|
def process_hf_input(self, hf_data): |
|
if "inputs" in hf_data: |
|
actual_data = hf_data["inputs"] |
|
return self.process_json_input(actual_data) |
|
else: |
|
return {"error": "Invalid Hugging Face JSON structure."} |
|
|
|
def save_audio_data_to_file(self, audio_data, sample_rate=40000): |
|
file_path = get_unique_filename('wav') |
|
wavfile.write(file_path, sample_rate, audio_data) |
|
return file_path |