|
import argparse
|
|
import sys
|
|
import torch
|
|
from multiprocessing import cpu_count
|
|
|
|
class Config:
|
|
def __init__(self):
|
|
self.device = "cuda:0"
|
|
self.is_half = True
|
|
self.n_cpu = 0
|
|
self.gpu_name = None
|
|
self.gpu_mem = None
|
|
self.python_cmd, self.listen_port, self.iscolab, self.noparallel, self.noautoopen = self.arg_parse()
|
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
|
|
|
@staticmethod
|
|
def arg_parse() -> tuple:
|
|
exe = sys.executable or "python"
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
|
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
|
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
|
parser.add_argument("--noparallel", action="store_true", help="Disable parallel processing")
|
|
parser.add_argument("--noautoopen", action="store_true", help="Do not open in browser automatically")
|
|
|
|
if len(sys.argv) > 1 and sys.argv[0].endswith("colab_kernel_launcher.py"):
|
|
args = parser.parse_known_args(sys.argv[1:])[0]
|
|
else:
|
|
args = parser.parse_args()
|
|
|
|
args.port = args.port if 0 <= args.port <= 65535 else 7865
|
|
|
|
return args.pycmd, args.port, args.colab, args.noparallel, args.noautoopen
|
|
|
|
@staticmethod
|
|
def has_mps() -> bool:
|
|
if not torch.backends.mps.is_available():
|
|
return False
|
|
try:
|
|
torch.zeros(1).to(torch.device("mps"))
|
|
return True
|
|
except Exception:
|
|
return False
|
|
|
|
def device_config(self) -> tuple:
|
|
if torch.cuda.is_available():
|
|
i_device = int(self.device.split(":")[-1])
|
|
self.gpu_name = torch.cuda.get_device_name(i_device)
|
|
if ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) or "P40" in self.gpu_name.upper() or "1060" in self.gpu_name or "1070" in self.gpu_name or "1080" in self.gpu_name:
|
|
print("Found GPU", self.gpu_name, ", force to fp32")
|
|
self.is_half = False
|
|
else:
|
|
print("Found GPU", self.gpu_name)
|
|
self.gpu_mem = int(torch.cuda.get_device_properties(i_device).total_memory / 1024 / 1024 / 1024 + 0.4)
|
|
elif self.has_mps():
|
|
print("No supported Nvidia GPU found, use MPS instead")
|
|
self.device = "mps"
|
|
self.is_half = False
|
|
else:
|
|
print("No supported Nvidia GPU found, use CPU instead")
|
|
self.device = "cpu"
|
|
self.is_half = False
|
|
|
|
if self.n_cpu == 0:
|
|
self.n_cpu = cpu_count()
|
|
|
|
if self.is_half:
|
|
x_pad, x_query, x_center, x_max = 3, 10, 60, 65
|
|
else:
|
|
x_pad, x_query, x_center, x_max = 1, 6, 38, 41
|
|
|
|
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
|
x_pad, x_query, x_center, x_max = 1, 5, 30, 32
|
|
|
|
return x_pad, x_query, x_center, x_max
|
|
|
|
if __name__ == "__main__":
|
|
config = Config()
|
|
print(config.__dict__)
|
|
|