File size: 5,383 Bytes
042b008 cc62aa8 a22d70a cc62aa8 a22d70a cc62aa8 a22d70a cc62aa8 042b008 86dda0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import nest_asyncio
nest_asyncio.apply()
import asyncio
import datetime
import logging
import os
import time
import traceback
import edge_tts
import gradio as gr
import librosa
import torch
from fairseq import checkpoint_utils
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS
edge_output_filename = "edge_output.mp3"
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
# RVC models
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def model_data(model_name):
# ... (rest of your model_data function)
pass # Keep the existing code here
def load_hubert():
# ... (rest of your load_hubert function)
pass # Keep the existing code here
def tts(
model_name,
speed,
tts_text,
tts_voice,
f0_up_key,
f0_method,
index_rate,
protect,
filter_radius=3,
resample_sr=0,
rms_mix_rate=0.25,
):
# ... (rest of your tts function)
pass # Keep the existing code here
print("Loading hubert model...")
hubert_model = load_hubert()
print("Hubert model loaded.")
print("Loading rmvpe model...")
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
print("rmvpe model loaded.")
initial_md = """
# RVC text-to-speech demo
This is a text-to-speech demo of RVC moe models of [rvc_okiba](https://huggingface.co/litagin/rvc_okiba) using [edge-tts](https://github.com/rany2/edge-tts).
Input text ➡[(edge-tts)](https://github.com/rany2/edge-tts)➡ Speech mp3 file ➡[(RVC)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)➡ Final output
This runs on the 🤗 server's cpu, so it may be slow.
Although the models are trained on Japanese voices and intended for Japanese text, they can also be used with other languages with the corresponding edge-tts speaker (but possibly with a Japanese accent).
Input characters are limited to 280 characters, and the speech audio is limited to 20 seconds in this 🤗 space.
[Visit this GitHub repo](https://github.com/litagin02/rvc-tts-webui) for running locally with your models and GPU!
"""
app = gr.Blocks()
with app:
with gr.Row():
with gr.Column():
model_name = gr.Dropdown(
label="Model (all models except man-_ are girl models)",
choices=models,
value=models[0],
)
f0_key_up = gr.Number(
label="Tune (+12 = 1 octave up from edge-tts, the best value depends on the models and speakers)",
value=0,
)
with gr.Column():
f0_method = gr.Radio(
label="Pitch extraction method (pm: very fast, low quality, rmvpe: a little slow, high quality)",
choices=["pm", "rmvpe"],
value="rmvpe",
interactive=True,
)
index_rate = gr.Slider(
minimum=0,
maximum=1,
label="Slang rate",
value=0.75,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label="Protect",
value=0.33,
step=0.01,
interactive=True,
)
with gr.Row():
with gr.Column():
tts_voice = gr.Dropdown(
label="Edge-tts speaker (format: language-Country-Name-Gender)",
choices=tts_voices,
allow_custom_value=False,
value="mn-MN-BataaNeural",
)
speed = gr.Slider(
minimum=-100,
maximum=100,
label="Speech speed (%)",
value=0,
step=10,
interactive=True,
)
tts_text = gr.Textbox(label="Input Text", value="Текстыг оруулна уу.")
with gr.Column():
but0 = gr.Button("Convert", variant="primary")
info_text = gr.Textbox(label="Output info")
with gr.Column():
edge_tts_output = gr.Audio(label="Edge Voice", type="filepath")
tts_output = gr.Audio(label="Result")
but0.click(
tts,
[
model_name,
speed,
tts_text,
tts_voice,
f0_key_up,
f0_method,
index_rate,
protect0,
],
[info_text, edge_tts_output, tts_output],
)
# Modify the launch line to enable more concurrent jobs
app.queue(concurrency_count=20, max_size=100).launch(server_name="0.0.0.0", share=True, inbrowser=True)
|