File size: 8,603 Bytes
cc62aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import asyncio
import datetime
import logging
import os
import time
import traceback

import edge_tts
import gradio as gr
import librosa
import torch
from fairseq import checkpoint_utils

from config import Config
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC

# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"

config = Config()

# Edge TTS
edge_output_filename = "edge_output.mp3"
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]  # Specific voices

# RVC models
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()


def model_data(model_name):
    # global n_spk, tgt_sr, net_g, vc, cpt, version, index_file
    pth_path = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".pth")
    ][0]
    print(f"Loading {pth_path}")
    cpt = torch.load(pth_path, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    else:
        raise ValueError("Unknown version")
    del net_g.enc_q
    net_g.load_state_dict(cpt["weight"], strict=False)
    print("Model loaded")
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    # n_spk = cpt["config"][-3]

    index_files = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".index")
    ]
    if len(index_files) == 0:
        print("No index file found")
        index_file = ""
    else:
        index_file = index_files[0]
        print(f"Index file found: {index_file}")

    return tgt_sr, net_g, vc, version, index_file, if_f0


def load_hubert():
    # global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    return hubert_model.eval()


def tts(
    model_name,
    tts_text,
    tts_voice,
    index_rate,
    use_uploaded_voice,
    uploaded_voice,
):
    # Default values for parameters used in EdgeTTS
    speed = 0  # Default speech speed
    f0_up_key = 0  # Default pitch adjustment
    f0_method = "rmvpe"  # Default pitch extraction method
    protect = 0.33  # Default protect value
    filter_radius = 3
    resample_sr = 0
    rms_mix_rate = 0.25
    edge_time = 0  # Initialize edge_time

    try:
        if use_uploaded_voice:
            if uploaded_voice is None:
                return "No voice file uploaded.", None, None
            
            # Process the uploaded voice file
            uploaded_file_path = uploaded_voice.name
            audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
        else:
            # EdgeTTS processing
            if limitation and len(tts_text) > 4000:
                return (
                    f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.",
                    None,
                    None,
                )
            
            # Invoke Edge TTS
            t0 = time.time()
            speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
            asyncio.run(
                edge_tts.Communicate(
                    tts_text, tts_voice, rate=speed_str
                ).save(edge_output_filename)
            )
            t1 = time.time()
            edge_time = t1 - t0

            audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)

        # Common processing after loading the audio
        duration = len(audio) / sr
        print(f"Audio duration: {duration}s")
        if limitation and duration >= 20:
            return (
                f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
                None,
                None,
            )

        f0_up_key = int(f0_up_key)
        tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)

        # Setup for RMVPE or other pitch extraction methods
        if f0_method == "rmvpe":
            vc.model_rmvpe = rmvpe_model

        # Perform voice conversion pipeline
        times = [0, 0, 0]
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            edge_output_filename if not use_uploaded_voice else uploaded_file_path,
            times,
            f0_up_key,
            f0_method,
            index_file,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            None,
        )

        if tgt_sr != resample_sr and resample_sr >= 16000:
            tgt_sr = resample_sr
        
        info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
        print(info)
        return (
            info,
            edge_output_filename if not use_uploaded_voice else None,
            (tgt_sr, audio_opt),
        )

    except EOFError:
        info = (
            "output not valid. This may occur when input text and speaker do not match."
        )
        print(info)
        return info, None, None
    except Exception as e:
        traceback_info = traceback.format_exc()
        print(traceback_info)
        return str(e), None, None

voice_mapping = {
    "Mongolian Male": "mn-MN-BataaNeural",
    "Mongolian Female": "mn-MN-YesuiNeural"
}



print("Loading hubert model...")
hubert_model = load_hubert()
print("Hubert model loaded.")

print("Loading rmvpe model...")
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
print("rmvpe model loaded.")



app = gr.Blocks()

with app:
    with gr.Row():
        model_name = gr.Dropdown(label="Model", choices=models, value=models[0])
        # Update the Dropdown for voice selection
        tts_voice = gr.Dropdown(label="Speaker", choices=list(voice_mapping.keys()), value="Mongolian Male")
        slang_rate = gr.Slider(minimum=0, maximum=1, label="Slang rate", value=0.75, interactive=True)
    with gr.Row():
        use_uploaded_voice = gr.Checkbox(label="Use uploaded voice file", value=False)
        voice_upload = gr.File(label="Upload voice file")
        tts_text = gr.Textbox(label="Input Text", value="Текстыг оруулна уу.")
        but0 = gr.Button("Convert", variant="primary")
    with gr.Row():
        info_text = gr.Textbox(label="Output info")
        edge_tts_output = gr.Audio(label="Voice", type="filepath")
        tts_output = gr.Audio(label="Result")

    # Modify the button click event to use the mapping
    def on_convert_click(model_name, tts_text, selected_voice, slang_rate, use_uploaded_voice, voice_upload):
        # Use the mapping to get the technical name
        technical_voice_name = voice_mapping[selected_voice]
        # Call your tts function with the technical voice name
        return tts(model_name, tts_text, technical_voice_name, slang_rate, use_uploaded_voice, voice_upload)

    but0.click(
        on_convert_click,
        inputs=[model_name, tts_text, tts_voice, slang_rate, use_uploaded_voice, voice_upload],
        outputs=[info_text, edge_tts_output, tts_output],
    )

# Launch the app
app.launch(share=True)