File size: 3,198 Bytes
dd0fa64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import argparse
import sys
import torch
from multiprocessing import cpu_count
class Config:
def __init__(self):
self.device = "cuda:0"
self.is_half = True
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.python_cmd, self.listen_port, self.iscolab, self.noparallel, self.noautoopen = self.arg_parse()
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
@staticmethod
def arg_parse() -> tuple:
exe = sys.executable or "python"
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
parser.add_argument("--colab", action="store_true", help="Launch in colab")
parser.add_argument("--noparallel", action="store_true", help="Disable parallel processing")
parser.add_argument("--noautoopen", action="store_true", help="Do not open in browser automatically")
if len(sys.argv) > 1 and sys.argv[0].endswith("colab_kernel_launcher.py"):
args = parser.parse_known_args(sys.argv[1:])[0]
else:
args = parser.parse_args()
args.port = args.port if 0 <= args.port <= 65535 else 7865
return args.pycmd, args.port, args.colab, args.noparallel, args.noautoopen
@staticmethod
def has_mps() -> bool:
if not torch.backends.mps.is_available():
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) or "P40" in self.gpu_name.upper() or "1060" in self.gpu_name or "1070" in self.gpu_name or "1080" in self.gpu_name:
print("Found GPU", self.gpu_name, ", force to fp32")
self.is_half = False
else:
print("Found GPU", self.gpu_name)
self.gpu_mem = int(torch.cuda.get_device_properties(i_device).total_memory / 1024 / 1024 / 1024 + 0.4)
elif self.has_mps():
print("No supported Nvidia GPU found, use MPS instead")
self.device = "mps"
self.is_half = False
else:
print("No supported Nvidia GPU found, use CPU instead")
self.device = "cpu"
self.is_half = False
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
x_pad, x_query, x_center, x_max = 3, 10, 60, 65
else:
x_pad, x_query, x_center, x_max = 1, 6, 38, 41
if self.gpu_mem is not None and self.gpu_mem <= 4:
x_pad, x_query, x_center, x_max = 1, 5, 30, 32
return x_pad, x_query, x_center, x_max
if __name__ == "__main__":
config = Config()
print(config.__dict__)
|