Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +561 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:69227
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: BAAI/bge-small-en-v1.5
|
10 |
+
widget:
|
11 |
+
- source_sentence: Gliss Hair Repair Conditioner Color Protect & Shine. Description
|
12 |
+
:This conditioner is designed for long-lasting colour protection for your coloured
|
13 |
+
hair. The ultimate colour conditioner gives up to 10 weeks of colour protection
|
14 |
+
and intense luminosity. The effective formula with the repair serum and the UV
|
15 |
+
filter repairs the hair, seals and protects the colour perfectly from washing
|
16 |
+
out and fading. It provides optimal colour protection for coloured hair up to
|
17 |
+
10 weeks with regular use.Hate hair drama? Then try Gliss Hair Repair products
|
18 |
+
for beautiful, restored and healthy-looking hair. GLISS Hair Repair products with
|
19 |
+
breakthrough patented Hair-Identical Keratin leverage technology to up to 10 layers
|
20 |
+
deep. Combined with essential benefits like colour protection, intense hydration,
|
21 |
+
long-lasting volume, and weightless nourishment, you get the repair you need without
|
22 |
+
having to compromise.!
|
23 |
+
sentences:
|
24 |
+
- Dairy Milk Honeycomb & Nuts - Imported. Description :Cadbury dairy milk is all
|
25 |
+
about regaling in the richness and creaminess of these classic chocolate bars.
|
26 |
+
These chocolate bars are available in a number of diverse flavours that offer
|
27 |
+
you a reason to celebrate every small and big occasion of happiness.!
|
28 |
+
- 'product
|
29 |
+
|
30 |
+
Bio Flame Of The Forest - Fresh Shine Expertise Oil Bio Flame Of The Forest
|
31 |
+
- Fresh Shine Expertis...
|
32 |
+
|
33 |
+
Bio Flame Of The Forest - Fresh Shine Expertise Oil Bio Flame Of The Forest
|
34 |
+
- Fresh Shine Expertis...
|
35 |
+
|
36 |
+
Name: combined, dtype: object'
|
37 |
+
- Hygiene Hand Wipes With Anti-bacterial Actives- Skin-Friendly. Description :Have
|
38 |
+
you stepped out of your house and wondered if the door that you just pushed open,
|
39 |
+
was clean? Are there germs lurking around you, that you wish you could see better?
|
40 |
+
Have you wondered if you have been careful in ensuring the best protection against
|
41 |
+
bacteria and germs? Is your personal hygiene standard good enough? Personal Hygiene
|
42 |
+
is in your hands. Literally. KeepSafe by Marico takes care of your Hygiene needs
|
43 |
+
through its range of premium quality sanitizer, disinfectants, wipes, hand wash
|
44 |
+
and personal hygiene products.KeepSafe Hygiene Hand Wipes are rich in anti-bacterial
|
45 |
+
actives that sanitise and effectively fight germs. These wipes are rich in Aloe
|
46 |
+
Vera and Glycerine and are mild and soothing on the skin. These hygiene wipes
|
47 |
+
are so soft, that you can use them every day, as many times as you want. Like
|
48 |
+
a true Marico product, KeepSafe believes in transparency, superior quality and
|
49 |
+
complete essential care. Try out the Multi-purpose Disinfectant and the Instant
|
50 |
+
Hand Sanitiser from KeepSafe by Marico range for complete out-of-home hygiene.
|
51 |
+
Take No Chances. Keep Safe.!
|
52 |
+
- source_sentence: Fragrance Body Spray For Men (1000 sprays) - Forever. Description
|
53 |
+
:Soothing experience throughout the day, Consists of refreshing & Long lasting
|
54 |
+
fragrance. For Beauty tips, tricks & more visit https://bigbasket.blog/!
|
55 |
+
sentences:
|
56 |
+
- M2 Perfume Spray - for Men. Description :Engage Perfume Sprays created by International
|
57 |
+
Experts For Beauty tips, tricks & more visit http://lookbeautiful.in/ For Beauty
|
58 |
+
tips, tricks & more visit https://bigbasket.blog/!
|
59 |
+
- 'product
|
60 |
+
|
61 |
+
Dazzle Opalware Noodle Bowl Set - Tropical Lagoon Dazzle Opalware Noodle Bowl
|
62 |
+
Set - Tropical Lag...
|
63 |
+
|
64 |
+
Dazzle Opalware Noodle Bowl Set - Tropical Lagoon Dazzle Opalware Noodle Bowl
|
65 |
+
Set - Tropical Lag...
|
66 |
+
|
67 |
+
Name: combined, dtype: object'
|
68 |
+
- 'product
|
69 |
+
|
70 |
+
Hakka Noodles - Veg Hakka Noodles - Veg. Description :Ching''s Secr...
|
71 |
+
|
72 |
+
Hakka Noodles - Veg Hakka Noodles - Veg. Description :It is ready ...
|
73 |
+
|
74 |
+
Name: combined, dtype: object'
|
75 |
+
- source_sentence: Amlant Ayurvedic Medicine For Acidity
|
76 |
+
sentences:
|
77 |
+
- Grapes - Thompson Seedless
|
78 |
+
- 'Ice Cream Bowl. Description :Excellent quality crystal clear glass
|
79 |
+
|
80 |
+
Easy to handle
|
81 |
+
|
82 |
+
Ideal for gifting
|
83 |
+
|
84 |
+
Dishwasher safe
|
85 |
+
|
86 |
+
This glass is made from high-quality material & crafted in a new design for easy
|
87 |
+
handling.!'
|
88 |
+
- Melamine Snack Set - Red. Description :Made of 100% food-grade melamine and food
|
89 |
+
contact grade colour, this snack set is heat resistant up to a temp of 140º C.
|
90 |
+
It is resistant to breaking, cracking & chipping. Stain-proof, it comes with long-lasting
|
91 |
+
designs. It has a glazed finish that makes it aesthetically pleasing. This snack
|
92 |
+
set is safe for dishwasher use.!
|
93 |
+
- source_sentence: Wonder Pants - Small, Combo. Description :Your baby spends a good
|
94 |
+
part of their day in a diaper. Therefore, choosing the right diaper for their
|
95 |
+
tender and delicate skin is extremely important. And this is where, we introduce
|
96 |
+
our next-generation product, India's 1st diaper pants with the unique Bubble-Bed
|
97 |
+
technology. There are 3 areas where a diaper surrounds the baby's skin-the baby's
|
98 |
+
bottom, the baby's waist, and the baby's thigh. The skin of the baby in all these
|
99 |
+
areas is extremely delicate and sensitiveHuggies Wonder Pants Diapers Small Size
|
100 |
+
pack with 3D Bubble bed technology with a Cushiony Waistband.!
|
101 |
+
sentences:
|
102 |
+
- Home Mate Garbage Bag - Green, Oxo-Bio-Degradable Roll, 30X37, 50 Micron. Description
|
103 |
+
:These garbage bags are designed to ease the task of garbage disposal, and the
|
104 |
+
bio-degradable material, makes it environment friendly and helps spread the word
|
105 |
+
of hygiene and cleanliness. They are strong enough to carry waste neatly without
|
106 |
+
causing a mess, and large enough to carry it all at once. They also offer great
|
107 |
+
flexibility, convenience and ensure a high degree of hygiene, whether at home
|
108 |
+
or in office.!
|
109 |
+
- 'product
|
110 |
+
|
111 |
+
Baby Diapers & Sanitary Disposal Bag Baby Diapers & Sanitary Disposal Bag.
|
112 |
+
Descript...
|
113 |
+
|
114 |
+
Baby Diapers & Sanitary Disposal Bag Baby Diapers & Sanitary Disposal Bag.
|
115 |
+
Descript...
|
116 |
+
|
117 |
+
Name: combined, dtype: object'
|
118 |
+
- 'product
|
119 |
+
|
120 |
+
Organic - Sugar/Sakkare Brown Organic - Sugar/Sakkare Brown. Description :Pu...
|
121 |
+
|
122 |
+
Organic - Sugar/Sakkare Brown Organic - Sugar/Sakkare Brown. Description :Tu...
|
123 |
+
|
124 |
+
Name: combined, dtype: object'
|
125 |
+
- source_sentence: Coffee Filter Papers - Size 02, White. Description :Hario brings
|
126 |
+
in Cone-shaped natural paper filter for Pour-over brewing experience for a great
|
127 |
+
cup of Coffee. Hario's V60, size 02 White, give you a perfect brew in comparison
|
128 |
+
to mesh filters. These paper filters are of great quality and they produce a clean,
|
129 |
+
flavorful, sediment-free cup. They are disposable, and thus it makes it convenient
|
130 |
+
and easier to use for brewing and cleanup. Perfect choice for coffee enthusiasts
|
131 |
+
who like to grind their coffee at home. These papers are safe to use and eco-friendly.
|
132 |
+
The Box comes with 100 disposable 02 paper filters.!
|
133 |
+
sentences:
|
134 |
+
- Tomato Disc 70 g + Cheese Balls 70 g
|
135 |
+
- 'product
|
136 |
+
|
137 |
+
4mm Aluminium Induction Base Chapati Roti Tawa - Silver 4mm Aluminium Induction
|
138 |
+
Base Chapati Roti Tawa...
|
139 |
+
|
140 |
+
4mm Aluminium Induction Base Chapati Roti Tawa - Silver 4mm Aluminium Induction
|
141 |
+
Base Chapati Roti Tawa...
|
142 |
+
|
143 |
+
Name: combined, dtype: object'
|
144 |
+
- Steel Rice Serving Spoon - Medium, Classic Diana Series, BBST37. Description :BB
|
145 |
+
Home provides fine and classy cooking and serving tools that can make difference
|
146 |
+
to your kitchen experience. These cooking/serving tools are made from 100% food
|
147 |
+
grade stainless steel. The handle is designed in a way so it does not feel heavy
|
148 |
+
while cooking/serving. It is easy to store as it has a bottom hole on the handle
|
149 |
+
to hang it on the wall.!
|
150 |
+
pipeline_tag: sentence-similarity
|
151 |
+
library_name: sentence-transformers
|
152 |
+
metrics:
|
153 |
+
- pearson_cosine
|
154 |
+
- spearman_cosine
|
155 |
+
model-index:
|
156 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
157 |
+
results:
|
158 |
+
- task:
|
159 |
+
type: semantic-similarity
|
160 |
+
name: Semantic Similarity
|
161 |
+
dataset:
|
162 |
+
name: bge eval
|
163 |
+
type: bge-eval
|
164 |
+
metrics:
|
165 |
+
- type: pearson_cosine
|
166 |
+
value: 0.9791486195203369
|
167 |
+
name: Pearson Cosine
|
168 |
+
- type: spearman_cosine
|
169 |
+
value: 0.15795715637146185
|
170 |
+
name: Spearman Cosine
|
171 |
+
- type: pearson_cosine
|
172 |
+
value: 0.9798210832808076
|
173 |
+
name: Pearson Cosine
|
174 |
+
- type: spearman_cosine
|
175 |
+
value: 0.1632937701650559
|
176 |
+
name: Spearman Cosine
|
177 |
+
---
|
178 |
+
|
179 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
180 |
+
|
181 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
182 |
+
|
183 |
+
## Model Details
|
184 |
+
|
185 |
+
### Model Description
|
186 |
+
- **Model Type:** Sentence Transformer
|
187 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
188 |
+
- **Maximum Sequence Length:** 512 tokens
|
189 |
+
- **Output Dimensionality:** 384 dimensions
|
190 |
+
- **Similarity Function:** Cosine Similarity
|
191 |
+
<!-- - **Training Dataset:** Unknown -->
|
192 |
+
<!-- - **Language:** Unknown -->
|
193 |
+
<!-- - **License:** Unknown -->
|
194 |
+
|
195 |
+
### Model Sources
|
196 |
+
|
197 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
198 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
199 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
200 |
+
|
201 |
+
### Full Model Architecture
|
202 |
+
|
203 |
+
```
|
204 |
+
SentenceTransformer(
|
205 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
206 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
207 |
+
(2): Normalize()
|
208 |
+
)
|
209 |
+
```
|
210 |
+
|
211 |
+
## Usage
|
212 |
+
|
213 |
+
### Direct Usage (Sentence Transformers)
|
214 |
+
|
215 |
+
First install the Sentence Transformers library:
|
216 |
+
|
217 |
+
```bash
|
218 |
+
pip install -U sentence-transformers
|
219 |
+
```
|
220 |
+
|
221 |
+
Then you can load this model and run inference.
|
222 |
+
```python
|
223 |
+
from sentence_transformers import SentenceTransformer
|
224 |
+
|
225 |
+
# Download from the 🤗 Hub
|
226 |
+
model = SentenceTransformer("mavihsrr/bgeEmbeddingsRetailedFT")
|
227 |
+
# Run inference
|
228 |
+
sentences = [
|
229 |
+
"Coffee Filter Papers - Size 02, White. Description :Hario brings in Cone-shaped natural paper filter for Pour-over brewing experience for a great cup of Coffee. Hario's V60, size 02 White, give you a perfect brew in comparison to mesh filters. These paper filters are of great quality and they produce a clean, flavorful, sediment-free cup. They are disposable, and thus it makes it convenient and easier to use for brewing and cleanup. Perfect choice for coffee enthusiasts who like to grind their coffee at home. These papers are safe to use and eco-friendly. The Box comes with 100 disposable 02 paper filters.!",
|
230 |
+
'Steel Rice Serving Spoon - Medium, Classic Diana Series, BBST37. Description :BB Home provides fine and classy cooking and serving tools that can make difference to your kitchen experience. These cooking/serving tools are made from 100% food grade stainless steel. The handle is designed in a way so it does not feel heavy while cooking/serving. It is easy to store as it has a bottom hole on the handle to hang it on the wall.!',
|
231 |
+
'Tomato Disc 70 g + Cheese Balls 70 g',
|
232 |
+
]
|
233 |
+
embeddings = model.encode(sentences)
|
234 |
+
print(embeddings.shape)
|
235 |
+
# [3, 384]
|
236 |
+
|
237 |
+
# Get the similarity scores for the embeddings
|
238 |
+
similarities = model.similarity(embeddings, embeddings)
|
239 |
+
print(similarities.shape)
|
240 |
+
# [3, 3]
|
241 |
+
```
|
242 |
+
|
243 |
+
<!--
|
244 |
+
### Direct Usage (Transformers)
|
245 |
+
|
246 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
247 |
+
|
248 |
+
</details>
|
249 |
+
-->
|
250 |
+
|
251 |
+
<!--
|
252 |
+
### Downstream Usage (Sentence Transformers)
|
253 |
+
|
254 |
+
You can finetune this model on your own dataset.
|
255 |
+
|
256 |
+
<details><summary>Click to expand</summary>
|
257 |
+
|
258 |
+
</details>
|
259 |
+
-->
|
260 |
+
|
261 |
+
<!--
|
262 |
+
### Out-of-Scope Use
|
263 |
+
|
264 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
265 |
+
-->
|
266 |
+
|
267 |
+
## Evaluation
|
268 |
+
|
269 |
+
### Metrics
|
270 |
+
|
271 |
+
#### Semantic Similarity
|
272 |
+
|
273 |
+
* Dataset: `bge-eval`
|
274 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
275 |
+
|
276 |
+
| Metric | Value |
|
277 |
+
|:--------------------|:----------|
|
278 |
+
| pearson_cosine | 0.9791 |
|
279 |
+
| **spearman_cosine** | **0.158** |
|
280 |
+
|
281 |
+
#### Semantic Similarity
|
282 |
+
|
283 |
+
* Dataset: `bge-eval`
|
284 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
285 |
+
|
286 |
+
| Metric | Value |
|
287 |
+
|:--------------------|:-----------|
|
288 |
+
| pearson_cosine | 0.9798 |
|
289 |
+
| **spearman_cosine** | **0.1633** |
|
290 |
+
|
291 |
+
<!--
|
292 |
+
## Bias, Risks and Limitations
|
293 |
+
|
294 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
295 |
+
-->
|
296 |
+
|
297 |
+
<!--
|
298 |
+
### Recommendations
|
299 |
+
|
300 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
301 |
+
-->
|
302 |
+
|
303 |
+
## Training Details
|
304 |
+
|
305 |
+
### Training Dataset
|
306 |
+
|
307 |
+
#### Unnamed Dataset
|
308 |
+
|
309 |
+
|
310 |
+
* Size: 69,227 training samples
|
311 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
312 |
+
* Approximate statistics based on the first 1000 samples:
|
313 |
+
| | sentence1 | sentence2 | score |
|
314 |
+
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
315 |
+
| type | string | string | float |
|
316 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 114.97 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 101.87 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.18</li><li>mean: 0.88</li><li>max: 0.96</li></ul> |
|
317 |
+
* Samples:
|
318 |
+
| sentence1 | sentence2 | score |
|
319 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
320 |
+
| <code>Breakfast Mix - Masala Idli. Description :Established in 1924, MTR is the contemporary way to authentic tasting food, Our products are backed by culinary expertise honed, over 8 decades of serving wholesome, tasty and high quality vegetarian food, Using authentic Indian recipes, the purest and best quality natural ingredients and traditional methods of preparation, We brings you a range of products of unmatched flavour and taste, to delight your family at every meal and every occasion, MTR Daily Favourites is your dependable partner in the Kitchen that helps you make your family's everyday meals tasty and wholesome, So bring home the confidence of great tasting food everyday with MTR..!</code> | <code>Quinoa Flakes. Description :Keep a good balance of satisfying your taste buds and satiating your hunger pangs. Nutriwish Quinoa Flakes are a “complete” protein containing all eight essential amino acids. The perfect antidote to all that sugar, Nutriwish Quinoa Flakes are delicious cold in a salad, served warm as a side dish or even combined with vegetables and dairy to make a spectacular and filling vegetarian main course. Curb food cravings and start your day yummy with the starchy Nutriwish Quinoa Flakes.!</code> | <code>0.9524586385560029</code> |
|
321 |
+
| <code>1 To 1 Baking Flour - Gluten Free. Description :Bob Red Mill gluten-free 1-to-1 baking flour makes it easy to transform traditional recipes to gluten-free. Simply follow your favourite baking recipe, replacing the wheat flour with this blend. It is formulated for baked goods with terrific taste and texture, no additional speciality ingredients or recipes required. It is suitable for cookies, cakes, brownies, muffins, and more.!</code> | <code>Chocolate - Drink Powder. Description :Hintz cocoa powder is not just ideal for making biscuits, ice cream and deserts. It is also dissolved in hot milk - a delicious chocolate beverage.!</code> | <code>0.8764388983469142</code> |
|
322 |
+
| <code>Joy Round Kids Glass. Description :This glass, made of plastic material, is specially designed for your kid. It is lightweight and easy to use. This glass is ideal for drinking water, milk, juices, health drinks etc.!</code> | <code>Plastic Lunch Box/Tiffin Box - Disney Mickey Mouse, BPA Free, HMHILB 199-MK. Description :HMI brings this 4 side lock and lock style. This is airtight, leak-proof and microwave safe. It comes with a small container, fork & spoon.!</code> | <code>0.9289614489097255</code> |
|
323 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
324 |
+
```json
|
325 |
+
{
|
326 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
327 |
+
}
|
328 |
+
```
|
329 |
+
|
330 |
+
### Evaluation Dataset
|
331 |
+
|
332 |
+
#### Unnamed Dataset
|
333 |
+
|
334 |
+
|
335 |
+
* Size: 8,654 evaluation samples
|
336 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
337 |
+
* Approximate statistics based on the first 1000 samples:
|
338 |
+
| | sentence1 | sentence2 | score |
|
339 |
+
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
340 |
+
| type | string | string | float |
|
341 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 110.58 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 97.13 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.19</li><li>mean: 0.87</li><li>max: 0.96</li></ul> |
|
342 |
+
* Samples:
|
343 |
+
| sentence1 | sentence2 | score |
|
344 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
345 |
+
| <code>1947 Flora Natural Aroma Incense Sticks - Economy Pack. Description :A Traditional formula that is handed over by the founder, incense sticks is made the traditional way with a ‘masala’ or mixture of 100% natural aromatic botanicals. During your rituals, these incense sticks will bring about a fresh and fragrant breath of conscious soothing bliss.!</code> | <code>Designer Jyot - Green. Description :This is made in India Initiative and create a meditative and peaceful ambience in your puja room with the handmade Brass Mandir Jyot. It extremely durable and crack-resistant, which allows you to use it with ease on a daily basis. This Jyot is very attractive and worth purchasing for personal use or for gifting purpose. Easy to Use and Clean. This Glass brass diya is designed for ease in inserting whip, refilling oil and cleaning. It emits brighter light due to the increased clarity provided by the superior quality glass. The flame of this brass diya does not go off or cause any danger even when the fan is on as the diya comes with a lid.!</code> | <code>0.9030882765047124</code> |
|
346 |
+
| <code>Mexican Seasoning. Description :The rich tapestry of sweet and spicy flavours that Mexican cuisine is loved for - now captured in a magic blend. This international seasoning product is inbuilt with unique 2-way flip cap to sprinkle it or scoop it. On1y is a new way of rediscovering the power of herbs and spices. On1y can conveniently become a part of your daily diet for the irresistible benefits that it brings.!</code> | <code>Rainbow Strands. Description :Colourful jimmies/sprinkles make decorating your cakes, cupcakes and cookies fun and easy. Great as an ice cream topping too.!</code> | <code>0.9584305870004965</code> |
|
347 |
+
| <code>Intense 75% Dark Chocolate. Description :This pack has 100gm 75% Luxury Intense Dark Chocolate. With meticulous culinary skills the exotic intense bitterness of cacao beans emerges in this bar. Chocolate was invented in 1900 BC by the Aztecs in Central America. We at Didier & Frank bring you those exotic flavours and hand crafted chocolates that the Aztecs enjoyed secretly. Today, Didier & Frank makes the best chocolates in the world.!</code> | <code>Puff Pastry Sticks With Butter. Description :The unique and timeless original Classic Millefoglie by Matilde Vicenzi: crumbly sticks of delicate pastry typical of the Italian tradition, with all the flavour of butter. With 192 crispy and delicate layers of puff pastry and just a light layer of premium butter, our inimitable Millefoglie d’Italia are among the most popular desserts in Italy.!</code> | <code>0.9553127949715517</code> |
|
348 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
349 |
+
```json
|
350 |
+
{
|
351 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
352 |
+
}
|
353 |
+
```
|
354 |
+
|
355 |
+
### Training Hyperparameters
|
356 |
+
#### Non-Default Hyperparameters
|
357 |
+
|
358 |
+
- `eval_strategy`: steps
|
359 |
+
- `per_device_train_batch_size`: 16
|
360 |
+
- `per_device_eval_batch_size`: 16
|
361 |
+
- `learning_rate`: 2e-05
|
362 |
+
- `num_train_epochs`: 1
|
363 |
+
- `warmup_ratio`: 0.1
|
364 |
+
- `bf16`: True
|
365 |
+
- `batch_sampler`: no_duplicates
|
366 |
+
|
367 |
+
#### All Hyperparameters
|
368 |
+
<details><summary>Click to expand</summary>
|
369 |
+
|
370 |
+
- `overwrite_output_dir`: False
|
371 |
+
- `do_predict`: False
|
372 |
+
- `eval_strategy`: steps
|
373 |
+
- `prediction_loss_only`: True
|
374 |
+
- `per_device_train_batch_size`: 16
|
375 |
+
- `per_device_eval_batch_size`: 16
|
376 |
+
- `per_gpu_train_batch_size`: None
|
377 |
+
- `per_gpu_eval_batch_size`: None
|
378 |
+
- `gradient_accumulation_steps`: 1
|
379 |
+
- `eval_accumulation_steps`: None
|
380 |
+
- `torch_empty_cache_steps`: None
|
381 |
+
- `learning_rate`: 2e-05
|
382 |
+
- `weight_decay`: 0.0
|
383 |
+
- `adam_beta1`: 0.9
|
384 |
+
- `adam_beta2`: 0.999
|
385 |
+
- `adam_epsilon`: 1e-08
|
386 |
+
- `max_grad_norm`: 1.0
|
387 |
+
- `num_train_epochs`: 1
|
388 |
+
- `max_steps`: -1
|
389 |
+
- `lr_scheduler_type`: linear
|
390 |
+
- `lr_scheduler_kwargs`: {}
|
391 |
+
- `warmup_ratio`: 0.1
|
392 |
+
- `warmup_steps`: 0
|
393 |
+
- `log_level`: passive
|
394 |
+
- `log_level_replica`: warning
|
395 |
+
- `log_on_each_node`: True
|
396 |
+
- `logging_nan_inf_filter`: True
|
397 |
+
- `save_safetensors`: True
|
398 |
+
- `save_on_each_node`: False
|
399 |
+
- `save_only_model`: False
|
400 |
+
- `restore_callback_states_from_checkpoint`: False
|
401 |
+
- `no_cuda`: False
|
402 |
+
- `use_cpu`: False
|
403 |
+
- `use_mps_device`: False
|
404 |
+
- `seed`: 42
|
405 |
+
- `data_seed`: None
|
406 |
+
- `jit_mode_eval`: False
|
407 |
+
- `use_ipex`: False
|
408 |
+
- `bf16`: True
|
409 |
+
- `fp16`: False
|
410 |
+
- `fp16_opt_level`: O1
|
411 |
+
- `half_precision_backend`: auto
|
412 |
+
- `bf16_full_eval`: False
|
413 |
+
- `fp16_full_eval`: False
|
414 |
+
- `tf32`: None
|
415 |
+
- `local_rank`: 0
|
416 |
+
- `ddp_backend`: None
|
417 |
+
- `tpu_num_cores`: None
|
418 |
+
- `tpu_metrics_debug`: False
|
419 |
+
- `debug`: []
|
420 |
+
- `dataloader_drop_last`: False
|
421 |
+
- `dataloader_num_workers`: 0
|
422 |
+
- `dataloader_prefetch_factor`: None
|
423 |
+
- `past_index`: -1
|
424 |
+
- `disable_tqdm`: False
|
425 |
+
- `remove_unused_columns`: True
|
426 |
+
- `label_names`: None
|
427 |
+
- `load_best_model_at_end`: False
|
428 |
+
- `ignore_data_skip`: False
|
429 |
+
- `fsdp`: []
|
430 |
+
- `fsdp_min_num_params`: 0
|
431 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
432 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
433 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
434 |
+
- `deepspeed`: None
|
435 |
+
- `label_smoothing_factor`: 0.0
|
436 |
+
- `optim`: adamw_torch
|
437 |
+
- `optim_args`: None
|
438 |
+
- `adafactor`: False
|
439 |
+
- `group_by_length`: False
|
440 |
+
- `length_column_name`: length
|
441 |
+
- `ddp_find_unused_parameters`: None
|
442 |
+
- `ddp_bucket_cap_mb`: None
|
443 |
+
- `ddp_broadcast_buffers`: False
|
444 |
+
- `dataloader_pin_memory`: True
|
445 |
+
- `dataloader_persistent_workers`: False
|
446 |
+
- `skip_memory_metrics`: True
|
447 |
+
- `use_legacy_prediction_loop`: False
|
448 |
+
- `push_to_hub`: False
|
449 |
+
- `resume_from_checkpoint`: None
|
450 |
+
- `hub_model_id`: None
|
451 |
+
- `hub_strategy`: every_save
|
452 |
+
- `hub_private_repo`: None
|
453 |
+
- `hub_always_push`: False
|
454 |
+
- `gradient_checkpointing`: False
|
455 |
+
- `gradient_checkpointing_kwargs`: None
|
456 |
+
- `include_inputs_for_metrics`: False
|
457 |
+
- `include_for_metrics`: []
|
458 |
+
- `eval_do_concat_batches`: True
|
459 |
+
- `fp16_backend`: auto
|
460 |
+
- `push_to_hub_model_id`: None
|
461 |
+
- `push_to_hub_organization`: None
|
462 |
+
- `mp_parameters`:
|
463 |
+
- `auto_find_batch_size`: False
|
464 |
+
- `full_determinism`: False
|
465 |
+
- `torchdynamo`: None
|
466 |
+
- `ray_scope`: last
|
467 |
+
- `ddp_timeout`: 1800
|
468 |
+
- `torch_compile`: False
|
469 |
+
- `torch_compile_backend`: None
|
470 |
+
- `torch_compile_mode`: None
|
471 |
+
- `dispatch_batches`: None
|
472 |
+
- `split_batches`: None
|
473 |
+
- `include_tokens_per_second`: False
|
474 |
+
- `include_num_input_tokens_seen`: False
|
475 |
+
- `neftune_noise_alpha`: None
|
476 |
+
- `optim_target_modules`: None
|
477 |
+
- `batch_eval_metrics`: False
|
478 |
+
- `eval_on_start`: False
|
479 |
+
- `use_liger_kernel`: False
|
480 |
+
- `eval_use_gather_object`: False
|
481 |
+
- `average_tokens_across_devices`: False
|
482 |
+
- `prompts`: None
|
483 |
+
- `batch_sampler`: no_duplicates
|
484 |
+
- `multi_dataset_batch_sampler`: proportional
|
485 |
+
|
486 |
+
</details>
|
487 |
+
|
488 |
+
### Training Logs
|
489 |
+
| Epoch | Step | Training Loss | Validation Loss | bge-eval_spearman_cosine |
|
490 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------:|
|
491 |
+
| 0 | 0 | - | - | 0.0923 |
|
492 |
+
| 0.0231 | 100 | 0.0657 | 0.0386 | 0.1450 |
|
493 |
+
| 0.0462 | 200 | 0.0248 | 0.0133 | 0.1661 |
|
494 |
+
| 0.0693 | 300 | 0.0118 | - | - |
|
495 |
+
| 0.0231 | 100 | 0.0069 | 0.0070 | 0.1644 |
|
496 |
+
| 0.0462 | 200 | 0.0037 | 0.0040 | 0.1634 |
|
497 |
+
| 0.0693 | 300 | 0.0016 | 0.0038 | 0.1619 |
|
498 |
+
| 0.0924 | 400 | 0.0013 | 0.0042 | 0.1603 |
|
499 |
+
| 0.1156 | 500 | 0.0011 | 0.0049 | 0.1579 |
|
500 |
+
| 0.1387 | 600 | 0.0012 | 0.0052 | 0.1593 |
|
501 |
+
| 0.1618 | 700 | 0.0011 | 0.0053 | 0.1608 |
|
502 |
+
| 0.1849 | 800 | 0.0011 | 0.0055 | 0.1612 |
|
503 |
+
| 0.2080 | 900 | 0.0011 | 0.0063 | 0.1606 |
|
504 |
+
| 0.2311 | 1000 | 0.0011 | 0.0061 | 0.1585 |
|
505 |
+
| 0.2542 | 1100 | 0.0012 | 0.0061 | 0.1566 |
|
506 |
+
| 0.2773 | 1200 | 0.0011 | 0.0062 | 0.1557 |
|
507 |
+
| 0.3004 | 1300 | 0.0012 | 0.0062 | 0.1570 |
|
508 |
+
| 0.3235 | 1400 | 0.001 | 0.0058 | 0.1557 |
|
509 |
+
| 0.3467 | 1500 | 0.001 | 0.0063 | 0.1554 |
|
510 |
+
| 0.3698 | 1600 | 0.0011 | 0.0062 | 0.1572 |
|
511 |
+
| 0.3929 | 1700 | 0.0011 | 0.0061 | 0.1580 |
|
512 |
+
| 0.4160 | 1800 | 0.001 | - | 0.1598 |
|
513 |
+
| 0.2311 | 1000 | 0.0008 | 0.0063 | 0.1532 |
|
514 |
+
| 0.4622 | 2000 | 0.0008 | 0.0064 | 0.1651 |
|
515 |
+
| 0.6933 | 3000 | 0.001 | 0.0067 | 0.1627 |
|
516 |
+
| 0.9244 | 4000 | 0.001 | 0.0067 | 0.1633 |
|
517 |
+
|
518 |
+
|
519 |
+
### Framework Versions
|
520 |
+
- Python: 3.10.12
|
521 |
+
- Sentence Transformers: 3.3.1
|
522 |
+
- Transformers: 4.47.1
|
523 |
+
- PyTorch: 2.1.0+cu118
|
524 |
+
- Accelerate: 1.2.1
|
525 |
+
- Datasets: 3.2.0
|
526 |
+
- Tokenizers: 0.21.0
|
527 |
+
|
528 |
+
## Citation
|
529 |
+
|
530 |
+
### BibTeX
|
531 |
+
|
532 |
+
#### Sentence Transformers
|
533 |
+
```bibtex
|
534 |
+
@inproceedings{reimers-2019-sentence-bert,
|
535 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
536 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
537 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
538 |
+
month = "11",
|
539 |
+
year = "2019",
|
540 |
+
publisher = "Association for Computational Linguistics",
|
541 |
+
url = "https://arxiv.org/abs/1908.10084",
|
542 |
+
}
|
543 |
+
```
|
544 |
+
|
545 |
+
<!--
|
546 |
+
## Glossary
|
547 |
+
|
548 |
+
*Clearly define terms in order to be accessible across audiences.*
|
549 |
+
-->
|
550 |
+
|
551 |
+
<!--
|
552 |
+
## Model Card Authors
|
553 |
+
|
554 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
555 |
+
-->
|
556 |
+
|
557 |
+
<!--
|
558 |
+
## Model Card Contact
|
559 |
+
|
560 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
561 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.47.1",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.1.0+cu118"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c830858b66dbefec3cec099c7b8130e2c7c01a5039dd5f69b6d2d4961c38bb0a
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|