matthieulel commited on
Commit
096c303
·
verified ·
1 Parent(s): 084ecb1

Model save

Browse files
Files changed (2) hide show
  1. README.md +36 -38
  2. model.safetensors +1 -1
README.md CHANGED
@@ -2,8 +2,6 @@
2
  license: apache-2.0
3
  base_model: microsoft/beit-large-patch16-224-pt22k
4
  tags:
5
- - image-classification
6
- - vision
7
  - generated_from_trainer
8
  metrics:
9
  - accuracy
@@ -20,13 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  # beit-large-patch16-224-pt22k-finetuned-galaxy10-decals
22
 
23
- This model is a fine-tuned version of [microsoft/beit-large-patch16-224-pt22k](https://huggingface.co/microsoft/beit-large-patch16-224-pt22k) on the matthieulel/galaxy10_decals dataset.
24
  It achieves the following results on the evaluation set:
25
- - Loss: 0.5038
26
- - Accuracy: 0.8794
27
- - Precision: 0.8781
28
- - Recall: 0.8794
29
- - F1: 0.8780
30
 
31
  ## Model description
32
 
@@ -60,36 +58,36 @@ The following hyperparameters were used during training:
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
62
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
63
- | 1.5123 | 0.99 | 62 | 1.2940 | 0.5276 | 0.5208 | 0.5276 | 0.5021 |
64
- | 0.9691 | 2.0 | 125 | 0.7947 | 0.7272 | 0.7161 | 0.7272 | 0.7095 |
65
- | 0.7326 | 2.99 | 187 | 0.5790 | 0.8010 | 0.7979 | 0.8010 | 0.7970 |
66
- | 0.6346 | 4.0 | 250 | 0.6230 | 0.7931 | 0.7984 | 0.7931 | 0.7883 |
67
- | 0.5945 | 4.99 | 312 | 0.5042 | 0.8360 | 0.8390 | 0.8360 | 0.8349 |
68
- | 0.5607 | 6.0 | 375 | 0.4401 | 0.8455 | 0.8464 | 0.8455 | 0.8421 |
69
- | 0.5137 | 6.99 | 437 | 0.4689 | 0.8506 | 0.8533 | 0.8506 | 0.8449 |
70
- | 0.4842 | 8.0 | 500 | 0.4586 | 0.8484 | 0.8560 | 0.8484 | 0.8498 |
71
- | 0.4816 | 8.99 | 562 | 0.4310 | 0.8534 | 0.8548 | 0.8534 | 0.8518 |
72
- | 0.4538 | 10.0 | 625 | 0.4380 | 0.8529 | 0.8528 | 0.8529 | 0.8493 |
73
- | 0.4334 | 10.99 | 687 | 0.4288 | 0.8625 | 0.8628 | 0.8625 | 0.8617 |
74
- | 0.4086 | 12.0 | 750 | 0.4904 | 0.8608 | 0.8627 | 0.8608 | 0.8592 |
75
- | 0.4143 | 12.99 | 812 | 0.4148 | 0.8675 | 0.8697 | 0.8675 | 0.8663 |
76
- | 0.4164 | 14.0 | 875 | 0.4477 | 0.8647 | 0.8676 | 0.8647 | 0.8649 |
77
- | 0.3464 | 14.99 | 937 | 0.4843 | 0.8512 | 0.8534 | 0.8512 | 0.8500 |
78
- | 0.3654 | 16.0 | 1000 | 0.4632 | 0.8625 | 0.8631 | 0.8625 | 0.8619 |
79
- | 0.2933 | 16.99 | 1062 | 0.4811 | 0.8596 | 0.8605 | 0.8596 | 0.8574 |
80
- | 0.3299 | 18.0 | 1125 | 0.4574 | 0.8664 | 0.8664 | 0.8664 | 0.8656 |
81
- | 0.3178 | 18.99 | 1187 | 0.4504 | 0.8703 | 0.8697 | 0.8703 | 0.8687 |
82
- | 0.2976 | 20.0 | 1250 | 0.5002 | 0.8636 | 0.8619 | 0.8636 | 0.8610 |
83
- | 0.2982 | 20.99 | 1312 | 0.4977 | 0.8720 | 0.8701 | 0.8720 | 0.8701 |
84
- | 0.3092 | 22.0 | 1375 | 0.4820 | 0.8703 | 0.8710 | 0.8703 | 0.8687 |
85
- | 0.2835 | 22.99 | 1437 | 0.4671 | 0.8715 | 0.8711 | 0.8715 | 0.8709 |
86
- | 0.2596 | 24.0 | 1500 | 0.5075 | 0.8732 | 0.8737 | 0.8732 | 0.8729 |
87
- | 0.2669 | 24.99 | 1562 | 0.4963 | 0.8732 | 0.8719 | 0.8732 | 0.8716 |
88
- | 0.2409 | 26.0 | 1625 | 0.4955 | 0.8766 | 0.8749 | 0.8766 | 0.8754 |
89
- | 0.2409 | 26.99 | 1687 | 0.4988 | 0.8777 | 0.8783 | 0.8777 | 0.8776 |
90
- | 0.2683 | 28.0 | 1750 | 0.5038 | 0.8794 | 0.8781 | 0.8794 | 0.8780 |
91
- | 0.2299 | 28.99 | 1812 | 0.5038 | 0.8771 | 0.8760 | 0.8771 | 0.8759 |
92
- | 0.2394 | 29.76 | 1860 | 0.5048 | 0.8788 | 0.8779 | 0.8788 | 0.8775 |
93
 
94
 
95
  ### Framework versions
 
2
  license: apache-2.0
3
  base_model: microsoft/beit-large-patch16-224-pt22k
4
  tags:
 
 
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
 
18
 
19
  # beit-large-patch16-224-pt22k-finetuned-galaxy10-decals
20
 
21
+ This model is a fine-tuned version of [microsoft/beit-large-patch16-224-pt22k](https://huggingface.co/microsoft/beit-large-patch16-224-pt22k) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.5104
24
+ - Accuracy: 0.8726
25
+ - Precision: 0.8725
26
+ - Recall: 0.8726
27
+ - F1: 0.8718
28
 
29
  ## Model description
30
 
 
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.5632 | 0.99 | 62 | 1.3358 | 0.5265 | 0.5377 | 0.5265 | 0.4840 |
62
+ | 0.8801 | 2.0 | 125 | 0.7053 | 0.7717 | 0.7710 | 0.7717 | 0.7559 |
63
+ | 0.7408 | 2.99 | 187 | 0.5995 | 0.7897 | 0.7878 | 0.7897 | 0.7803 |
64
+ | 0.6124 | 4.0 | 250 | 0.5448 | 0.8140 | 0.8178 | 0.8140 | 0.8076 |
65
+ | 0.5799 | 4.99 | 312 | 0.5354 | 0.8174 | 0.8224 | 0.8174 | 0.8165 |
66
+ | 0.567 | 6.0 | 375 | 0.5044 | 0.8247 | 0.8314 | 0.8247 | 0.8194 |
67
+ | 0.5237 | 6.99 | 437 | 0.4913 | 0.8388 | 0.8429 | 0.8388 | 0.8371 |
68
+ | 0.4674 | 8.0 | 500 | 0.4927 | 0.8484 | 0.8541 | 0.8484 | 0.8477 |
69
+ | 0.4869 | 8.99 | 562 | 0.4167 | 0.8546 | 0.8570 | 0.8546 | 0.8526 |
70
+ | 0.4442 | 10.0 | 625 | 0.4086 | 0.8579 | 0.8583 | 0.8579 | 0.8564 |
71
+ | 0.4294 | 10.99 | 687 | 0.4743 | 0.8489 | 0.8516 | 0.8489 | 0.8489 |
72
+ | 0.4032 | 12.0 | 750 | 0.4350 | 0.8664 | 0.8651 | 0.8664 | 0.8647 |
73
+ | 0.4028 | 12.99 | 812 | 0.4443 | 0.8568 | 0.8623 | 0.8568 | 0.8561 |
74
+ | 0.3939 | 14.0 | 875 | 0.4193 | 0.8608 | 0.8605 | 0.8608 | 0.8593 |
75
+ | 0.3447 | 14.99 | 937 | 0.4289 | 0.8698 | 0.8692 | 0.8698 | 0.8688 |
76
+ | 0.354 | 16.0 | 1000 | 0.4471 | 0.8653 | 0.8661 | 0.8653 | 0.8648 |
77
+ | 0.2934 | 16.99 | 1062 | 0.4888 | 0.8574 | 0.8573 | 0.8574 | 0.8546 |
78
+ | 0.3262 | 18.0 | 1125 | 0.4605 | 0.8602 | 0.8602 | 0.8602 | 0.8588 |
79
+ | 0.3287 | 18.99 | 1187 | 0.4439 | 0.8681 | 0.8682 | 0.8681 | 0.8673 |
80
+ | 0.2848 | 20.0 | 1250 | 0.4986 | 0.8641 | 0.8633 | 0.8641 | 0.8615 |
81
+ | 0.283 | 20.99 | 1312 | 0.4663 | 0.8692 | 0.8681 | 0.8692 | 0.8676 |
82
+ | 0.3106 | 22.0 | 1375 | 0.4668 | 0.8720 | 0.8735 | 0.8720 | 0.8697 |
83
+ | 0.2785 | 22.99 | 1437 | 0.4899 | 0.8664 | 0.8649 | 0.8664 | 0.8650 |
84
+ | 0.2635 | 24.0 | 1500 | 0.5047 | 0.8771 | 0.8770 | 0.8771 | 0.8764 |
85
+ | 0.2573 | 24.99 | 1562 | 0.5144 | 0.8732 | 0.8730 | 0.8732 | 0.8723 |
86
+ | 0.238 | 26.0 | 1625 | 0.5012 | 0.8732 | 0.8729 | 0.8732 | 0.8723 |
87
+ | 0.2358 | 26.99 | 1687 | 0.5021 | 0.8681 | 0.8709 | 0.8681 | 0.8690 |
88
+ | 0.2624 | 28.0 | 1750 | 0.5154 | 0.8715 | 0.8711 | 0.8715 | 0.8705 |
89
+ | 0.229 | 28.99 | 1812 | 0.5087 | 0.8698 | 0.8690 | 0.8698 | 0.8689 |
90
+ | 0.227 | 29.76 | 1860 | 0.5104 | 0.8726 | 0.8725 | 0.8726 | 0.8718 |
91
 
92
 
93
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd3b2596d6bc88a56c57d173f7f07d2f752f95f1e5d399718e91f290cfdadadc
3
  size 1212638896
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e423fc7f5f3f0462d6d81d9d591226fe9e180447f1b874961cd256d9294b59a4
3
  size 1212638896