File size: 2,241 Bytes
edb41a4 1e3a38d edb41a4 1e3a38d edb41a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
tags:
- multi-label-classification
- multi-intent-detection
- huggingface
- deberta-v3
- transformers
library_name: transformers
task:
- text-classification
license: apache-2.0
---
# Multi-Intent Detection (MID) Model
This model was fine-tuned for the task of **Multi-Intent Detection (MID)**, a type of multi-label classification where each input can have multiple labels assigned. The dataset used for fine-tuning is specifically designed to simplify the MID task, with the number of labels limited to two per instance.
## Model Details
- **Base Model:** DeBERTa-v3-base
- **Task:** Multi-label classification
- **Number of Labels:** 2
- **Fine-tuning Framework:** Hugging Face Transformers
## Training Configuration
- **Training Arguments:**
- **Learning Rate:** 2e-5
- **Batch Size (Train):** 16
- **Batch Size (Eval):** 16
- **Gradient Accumulation Steps:** 2
- **Number of Epochs:** 8
- **Weight Decay:** 0.01
- **Warmup Ratio:** 10%
- **Learning Rate Scheduler Type:** Cosine
- **Mixed Precision Training:** Enabled (FP16)
- **Logging Steps:** 50
## Performance Metrics
| Epoch | Training Loss | Validation Loss | Precision | Recall | F1 Score | Accuracy |
|-------|---------------|-----------------|-----------|--------|----------|----------|
| 0 | 0.069100 | 0.069115 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 2 | 0.024100 | 0.022929 | 0.952334 | 0.316920 | 0.475576 | 0.078652 |
| 4 | 0.009200 | 0.010799 | 0.959768 | 0.819894 | 0.884334 | 0.653668 |
| 6 | 0.006300 | 0.008773 | 0.963243 | 0.883344 | 0.921565 | 0.770654 |
| 7 | 0.006200 | 0.008707 | 0.961635 | 0.886319 | 0.922442 | 0.775281 |
### Final Evaluation Metrics (Epoch 8):
- **Validation Loss:** 0.0087
- **Precision:** 0.9616
- **Recall:** 0.8863
- **F1 Score:** 0.9224
- **Accuracy:** 0.7753
## Limitations
- **Simplified Multi-Label Setting:** This model assumes a fixed number of two labels per instance, which may not generalize to datasets with more complex multi-label settings.
- **Performance on Unseen Data:** The model's performance may degrade if applied to data distributions significantly different from the training dataset. |