Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,24 @@
|
|
1 |
#NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2
|
2 |
|
3 |
-
This repository
|
4 |
-
|
|
|
|
|
5 |
Accuracy: 0.8203551912568307
|
6 |
|
7 |
-
Colab
|
8 |
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
|
|
|
1 |
#NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2
|
2 |
|
3 |
+
This repository features sentiment analysis projects that leverage BERT, a leading NLP model.
|
4 |
+
This project involves pre-processing, tokenization, and BERT customization for airline tweet sentiment classification.
|
5 |
+
The tasks in this model use the original model "BERT base model (no casing)",
|
6 |
+
uses a data set: https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment, and there are several stages in achieving results, below are the evaluation sets
|
7 |
Accuracy: 0.8203551912568307
|
8 |
|
9 |
+
Colab notebook for improvements: https://colab.research.google.com/drive/1IQen2iNXkjOgdzjyi7PQyLFqHyqHTF3A?usp=sharing
|
10 |
|
11 |
+
#classification report for more detailed evaluation :
|
12 |
|
13 |
+
| | precision | recall | f1-score | support |
|
14 |
+
|-----------|-----------|--------|----------|---------|
|
15 |
+
| negative | 0.88 | 0.90 | 0.89 | 959 |
|
16 |
+
| neutral | 0.68 | 0.58 | 0.62 | 293 |
|
17 |
+
| positive | 0.72 | 0.81 | 0.76 | 212 |
|
18 |
+
|-----------|-----------|--------|----------|---------|
|
19 |
+
| accuracy | | | 0.82 | 1464 |
|
20 |
+
| macro avg | 0.76 | 0.76 | 0.76 | 1464 |
|
21 |
+
| weighted avg | 0.82 | 0.82 | 0.82 | 1464 |
|
22 |
|
23 |
|
24 |
|