File size: 2,194 Bytes
68c929b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-Math-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: GenPRM-78k-train-5:5-decontamination
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GenPRM-78k-train-5:5-decontamination
This model is a fine-tuned version of [/data1/model/Qwen2.5-Math-7B-Instruct](https://huggingface.co//data1/model/Qwen2.5-Math-7B-Instruct) on the GenPRM-78k-train-5:5-decontamination dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2910
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3951 | 0.0823 | 100 | 0.3771 |
| 0.3471 | 0.1647 | 200 | 0.3431 |
| 0.3295 | 0.2470 | 300 | 0.3266 |
| 0.3162 | 0.3294 | 400 | 0.3161 |
| 0.3143 | 0.4117 | 500 | 0.3084 |
| 0.3054 | 0.4940 | 600 | 0.3029 |
| 0.3031 | 0.5764 | 700 | 0.2985 |
| 0.2988 | 0.6587 | 800 | 0.2953 |
| 0.2965 | 0.7410 | 900 | 0.2932 |
| 0.2935 | 0.8234 | 1000 | 0.2918 |
| 0.2975 | 0.9057 | 1100 | 0.2911 |
| 0.304 | 0.9881 | 1200 | 0.2910 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
|