Commit
·
6542487
1
Parent(s):
259f9b9
Update instantiation of flow.
Browse files- OpenAIChatAtomicFlow.py +103 -61
- OpenAIChatAtomicFlow.yaml +1 -1
OpenAIChatAtomicFlow.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import pprint
|
|
|
|
|
2 |
import hydra
|
3 |
|
4 |
import colorama
|
@@ -7,15 +9,17 @@ import time
|
|
7 |
from typing import List, Dict, Optional, Any
|
8 |
|
9 |
from langchain import PromptTemplate
|
10 |
-
|
11 |
from langchain.schema import HumanMessage, AIMessage, SystemMessage
|
12 |
|
|
|
13 |
from flows.message_annotators.abstract import MessageAnnotator
|
14 |
from flows.base_flows.abstract import AtomicFlow
|
15 |
from flows.datasets import GenericDemonstrationsDataset
|
16 |
|
17 |
from flows import utils
|
18 |
from flows.messages.chat_message import ChatMessage
|
|
|
19 |
|
20 |
log = utils.get_pylogger(__name__)
|
21 |
|
@@ -40,55 +44,98 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
40 |
response_annotators: Optional[Dict[str, MessageAnnotator]] = {}
|
41 |
|
42 |
def __init__(self, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# ~~~ Model generation ~~~
|
44 |
-
if "model_name" not in kwargs:
|
45 |
-
raise KeyError
|
46 |
|
47 |
-
if "generation_parameters" not in kwargs:
|
48 |
-
raise KeyError
|
49 |
|
50 |
# ~~~ Prompting ~~~
|
51 |
if "system_message_prompt_template" not in kwargs:
|
52 |
-
raise KeyError
|
|
|
|
|
|
|
53 |
|
54 |
if "human_message_prompt_template" not in kwargs:
|
55 |
-
raise KeyError
|
56 |
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
-
"
|
62 |
-
|
63 |
-
"
|
64 |
-
]
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def expected_inputs_given_state(self):
|
88 |
-
if self.
|
89 |
return ["query"]
|
90 |
else:
|
91 |
-
return self.expected_inputs
|
92 |
|
93 |
@staticmethod
|
94 |
def _get_message(prompt_template, input_data: Dict[str, Any]):
|
@@ -100,10 +147,12 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
100 |
return msg_content
|
101 |
|
102 |
def _get_demonstration_query_message_content(self, sample_data: Dict):
|
103 |
-
|
|
|
104 |
|
105 |
def _get_demonstration_response_message_content(self, sample_data: Dict):
|
106 |
-
|
|
|
107 |
|
108 |
def _get_annotator_with_key(self, key: str):
|
109 |
for _, ra in self.response_annotators.items():
|
@@ -113,6 +162,9 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
113 |
def _response_parsing(self, response: str, expected_outputs: List[str]):
|
114 |
target_annotators = [ra for _, ra in self.response_annotators.items() if ra.key in expected_outputs]
|
115 |
|
|
|
|
|
|
|
116 |
parsed_outputs = {}
|
117 |
for ra in target_annotators:
|
118 |
parsed_out = ra(response)
|
@@ -137,7 +189,7 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
137 |
chat_message = ChatMessage(
|
138 |
message_creator=message_creator,
|
139 |
parent_message_ids=parent_message_ids,
|
140 |
-
flow_runner=self.name,
|
141 |
flow_run_id=self.flow_run_id,
|
142 |
content=content
|
143 |
)
|
@@ -155,10 +207,6 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
155 |
self._update_state(update_data={"conversation_initialized": True})
|
156 |
|
157 |
def get_conversation_messages(self, message_format: Optional[str] = None):
|
158 |
-
assert message_format is None or message_format in [
|
159 |
-
"open_ai"
|
160 |
-
], f"Currently supported conversation message formats: 'open_ai'. '{message_format}' is not supported"
|
161 |
-
|
162 |
messages = self.flow_state["history"].get_chat_messages()
|
163 |
|
164 |
if message_format is None:
|
@@ -178,15 +226,16 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
178 |
raise ValueError(f"Unknown name: {message.message_creator}")
|
179 |
return processed_messages
|
180 |
else:
|
181 |
-
raise ValueError(
|
|
|
182 |
|
183 |
def _call(self):
|
184 |
api_key = self.flow_state["api_key"]
|
185 |
|
186 |
-
backend = ChatOpenAI(
|
187 |
-
model_name=self.model_name,
|
188 |
openai_api_key=api_key,
|
189 |
-
**self.generation_parameters,
|
190 |
)
|
191 |
|
192 |
messages = self.get_conversation_messages(
|
@@ -218,17 +267,17 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
218 |
if not _success:
|
219 |
raise error
|
220 |
|
221 |
-
if self.verbose:
|
222 |
messages_str = self.flow_state["history"].to_string()
|
223 |
log.info(
|
224 |
-
f"\n{colorama.Fore.MAGENTA}~~~ History [{self.name}] ~~~\n"
|
225 |
f"{colorama.Style.RESET_ALL}{messages_str}"
|
226 |
)
|
227 |
|
228 |
return response
|
229 |
|
230 |
def _prepare_conversation(self, input_data: Dict[str, Any]):
|
231 |
-
if self.
|
232 |
# ~~~ Check that the message has a `query` field ~~~
|
233 |
user_message_content = self.human_message_prompt_template.format(query=input_data["query"])
|
234 |
|
@@ -239,14 +288,7 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
239 |
self._log_chat_message(message_creator=self.user_name,
|
240 |
content=user_message_content)
|
241 |
|
242 |
-
|
243 |
-
# messages_str = self.flow_state["history"].to_string()
|
244 |
-
# log.info(
|
245 |
-
# f"\n{colorama.Fore.MAGENTA}~~~ Messages [{self.name} -- {self.flow_run_id}] ~~~\n"
|
246 |
-
# f"{colorama.Style.RESET_ALL}{messages_str}"
|
247 |
-
# )
|
248 |
-
# exit(0)
|
249 |
-
|
250 |
def run(self, input_data: Dict[str, Any], expected_outputs: List[str]) -> Dict[str, Any]:
|
251 |
# ~~~ Chat-specific preparation ~~~
|
252 |
self._prepare_conversation(input_data)
|
@@ -254,7 +296,7 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
254 |
# ~~~ Call ~~~
|
255 |
response = self._call()
|
256 |
answer_message = self._log_chat_message(
|
257 |
-
message_creator=self.assistant_name,
|
258 |
content=response
|
259 |
)
|
260 |
|
@@ -265,7 +307,7 @@ class OpenAIChatAtomicFlow(AtomicFlow):
|
|
265 |
)
|
266 |
self._update_state(update_data=parsed_outputs)
|
267 |
|
268 |
-
if self.verbose:
|
269 |
parsed_output_messages_str = pprint.pformat({k: m for k, m in parsed_outputs.items()},
|
270 |
indent=4)
|
271 |
log.info(
|
|
|
1 |
import pprint
|
2 |
+
from copy import deepcopy
|
3 |
+
|
4 |
import hydra
|
5 |
|
6 |
import colorama
|
|
|
9 |
from typing import List, Dict, Optional, Any
|
10 |
|
11 |
from langchain import PromptTemplate
|
12 |
+
import langchain
|
13 |
from langchain.schema import HumanMessage, AIMessage, SystemMessage
|
14 |
|
15 |
+
from flows.history import FlowHistory
|
16 |
from flows.message_annotators.abstract import MessageAnnotator
|
17 |
from flows.base_flows.abstract import AtomicFlow
|
18 |
from flows.datasets import GenericDemonstrationsDataset
|
19 |
|
20 |
from flows import utils
|
21 |
from flows.messages.chat_message import ChatMessage
|
22 |
+
from flows.utils.caching_utils import flow_run_cache
|
23 |
|
24 |
log = utils.get_pylogger(__name__)
|
25 |
|
|
|
44 |
response_annotators: Optional[Dict[str, MessageAnnotator]] = {}
|
45 |
|
46 |
def __init__(self, **kwargs):
|
47 |
+
self._validate_parameters(kwargs)
|
48 |
+
super().__init__(**kwargs)
|
49 |
+
|
50 |
+
assert self.flow_config["name"] not in [
|
51 |
+
"system",
|
52 |
+
"user",
|
53 |
+
"assistant",
|
54 |
+
], f"Flow name '{self.flow_config['name']}' cannot be 'system', 'user' or 'assistant'"
|
55 |
+
|
56 |
+
def set_up_flow_state(self):
|
57 |
+
super().set_up_flow_state()
|
58 |
+
self.flow_state["conversation_initialized"] = False
|
59 |
+
|
60 |
+
@classmethod
|
61 |
+
def _validate_parameters(cls, kwargs):
|
62 |
+
# ToDo: Deal with this in a cleaner way (with less repetition)
|
63 |
+
super()._validate_parameters(kwargs)
|
64 |
+
|
65 |
# ~~~ Model generation ~~~
|
66 |
+
if "model_name" not in kwargs["flow_config"]:
|
67 |
+
raise KeyError("model_name not specified in the flow_config.")
|
68 |
|
69 |
+
if "generation_parameters" not in kwargs["flow_config"]:
|
70 |
+
raise KeyError("generation_parameters not specified in the flow_config.")
|
71 |
|
72 |
# ~~~ Prompting ~~~
|
73 |
if "system_message_prompt_template" not in kwargs:
|
74 |
+
raise KeyError("system_message_prompt_template not passed to the constructor.")
|
75 |
+
|
76 |
+
if "query_message_prompt_template" not in kwargs:
|
77 |
+
raise KeyError("query_message_prompt_template not passed to the constructor.")
|
78 |
|
79 |
if "human_message_prompt_template" not in kwargs:
|
80 |
+
raise KeyError("human_message_prompt_template not passed to the constructor.")
|
81 |
|
82 |
+
@classmethod
|
83 |
+
def _set_up_prompts(cls, config):
|
84 |
+
kwargs = {}
|
85 |
|
86 |
+
kwargs["system_message_prompt_template"] = \
|
87 |
+
hydra.utils.instantiate(config['system_message_prompt_template'], _convert_="partial")
|
88 |
+
kwargs["query_message_prompt_template"] = \
|
89 |
+
hydra.utils.instantiate(config['query_message_prompt_template'], _convert_="partial")
|
90 |
+
kwargs["human_message_prompt_template"] = \
|
91 |
+
hydra.utils.instantiate(config['human_message_prompt_template'], _convert_="partial")
|
92 |
+
|
93 |
+
return kwargs
|
94 |
+
|
95 |
+
@classmethod
|
96 |
+
def _set_up_demonstration_templates(cls, config):
|
97 |
+
kwargs = {}
|
98 |
+
|
99 |
+
if "demonstrations_response_template" in config:
|
100 |
+
kwargs["demonstrations_response_template"] = \
|
101 |
+
hydra.utils.instantiate(config['demonstrations_response_template'], _convert_="partial")
|
102 |
+
|
103 |
+
return kwargs
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def _set_up_response_annotators(cls, config):
|
107 |
+
response_annotators = config.get("response_annotators", {})
|
108 |
+
if len(response_annotators) > 0:
|
109 |
+
for key, config in response_annotators.items():
|
110 |
+
response_annotators[key] = hydra.utils.instantiate(config, _convert_="partial")
|
111 |
+
return {"response_annotators": response_annotators}
|
112 |
+
|
113 |
+
@classmethod
|
114 |
+
def instantiate_from_config(cls, config):
|
115 |
+
flow_config = deepcopy(config)
|
116 |
+
|
117 |
+
kwargs = {"flow_config": flow_config}
|
118 |
+
|
119 |
+
# ~~~ Set up prompts ~~~
|
120 |
+
kwargs.update(cls._set_up_prompts(flow_config))
|
121 |
+
|
122 |
+
# ~~~ Set up demonstration templates ~~~
|
123 |
+
kwargs.update(cls._set_up_demonstration_templates(flow_config))
|
124 |
+
|
125 |
+
# ~~~ Set up response annotators ~~~
|
126 |
+
kwargs.update(cls._set_up_response_annotators(flow_config))
|
127 |
+
|
128 |
+
# ~~~ Instantiate flow ~~~
|
129 |
+
return cls(**kwargs)
|
130 |
+
|
131 |
+
def _is_conversation_initialized(self):
|
132 |
+
return self.flow_state["conversation_initialized"]
|
133 |
|
134 |
def expected_inputs_given_state(self):
|
135 |
+
if self._is_conversation_initialized():
|
136 |
return ["query"]
|
137 |
else:
|
138 |
+
return self.flow_config["expected_inputs"]
|
139 |
|
140 |
@staticmethod
|
141 |
def _get_message(prompt_template, input_data: Dict[str, Any]):
|
|
|
147 |
return msg_content
|
148 |
|
149 |
def _get_demonstration_query_message_content(self, sample_data: Dict):
|
150 |
+
input_variables = self.query_message_prompt_template.input_variables
|
151 |
+
return self.query_message_prompt_template.format(**{k: sample_data[k] for k in input_variables}), []
|
152 |
|
153 |
def _get_demonstration_response_message_content(self, sample_data: Dict):
|
154 |
+
input_variables = self.demonstrations_response_template.input_variables
|
155 |
+
return self.demonstrations_response_template.format(**{k: sample_data[k] for k in input_variables}), []
|
156 |
|
157 |
def _get_annotator_with_key(self, key: str):
|
158 |
for _, ra in self.response_annotators.items():
|
|
|
162 |
def _response_parsing(self, response: str, expected_outputs: List[str]):
|
163 |
target_annotators = [ra for _, ra in self.response_annotators.items() if ra.key in expected_outputs]
|
164 |
|
165 |
+
if len(target_annotators) == 0:
|
166 |
+
return {expected_outputs[0]: response}
|
167 |
+
|
168 |
parsed_outputs = {}
|
169 |
for ra in target_annotators:
|
170 |
parsed_out = ra(response)
|
|
|
189 |
chat_message = ChatMessage(
|
190 |
message_creator=message_creator,
|
191 |
parent_message_ids=parent_message_ids,
|
192 |
+
flow_runner=self.flow_config["name"],
|
193 |
flow_run_id=self.flow_run_id,
|
194 |
content=content
|
195 |
)
|
|
|
207 |
self._update_state(update_data={"conversation_initialized": True})
|
208 |
|
209 |
def get_conversation_messages(self, message_format: Optional[str] = None):
|
|
|
|
|
|
|
|
|
210 |
messages = self.flow_state["history"].get_chat_messages()
|
211 |
|
212 |
if message_format is None:
|
|
|
226 |
raise ValueError(f"Unknown name: {message.message_creator}")
|
227 |
return processed_messages
|
228 |
else:
|
229 |
+
raise ValueError(
|
230 |
+
f"Currently supported conversation message formats: 'open_ai'. '{message_format}' is not supported")
|
231 |
|
232 |
def _call(self):
|
233 |
api_key = self.flow_state["api_key"]
|
234 |
|
235 |
+
backend = langchain.chat_models.ChatOpenAI(
|
236 |
+
model_name=self.flow_config["model_name"],
|
237 |
openai_api_key=api_key,
|
238 |
+
**self.flow_config["generation_parameters"],
|
239 |
)
|
240 |
|
241 |
messages = self.get_conversation_messages(
|
|
|
267 |
if not _success:
|
268 |
raise error
|
269 |
|
270 |
+
if self.flow_config["verbose"]:
|
271 |
messages_str = self.flow_state["history"].to_string()
|
272 |
log.info(
|
273 |
+
f"\n{colorama.Fore.MAGENTA}~~~ History [{self.flow_config['name']}] ~~~\n"
|
274 |
f"{colorama.Style.RESET_ALL}{messages_str}"
|
275 |
)
|
276 |
|
277 |
return response
|
278 |
|
279 |
def _prepare_conversation(self, input_data: Dict[str, Any]):
|
280 |
+
if self._is_conversation_initialized():
|
281 |
# ~~~ Check that the message has a `query` field ~~~
|
282 |
user_message_content = self.human_message_prompt_template.format(query=input_data["query"])
|
283 |
|
|
|
288 |
self._log_chat_message(message_creator=self.user_name,
|
289 |
content=user_message_content)
|
290 |
|
291 |
+
@flow_run_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
def run(self, input_data: Dict[str, Any], expected_outputs: List[str]) -> Dict[str, Any]:
|
293 |
# ~~~ Chat-specific preparation ~~~
|
294 |
self._prepare_conversation(input_data)
|
|
|
296 |
# ~~~ Call ~~~
|
297 |
response = self._call()
|
298 |
answer_message = self._log_chat_message(
|
299 |
+
message_creator=self.flow_config["assistant_name"],
|
300 |
content=response
|
301 |
)
|
302 |
|
|
|
307 |
)
|
308 |
self._update_state(update_data=parsed_outputs)
|
309 |
|
310 |
+
if self.flow_config["verbose"]:
|
311 |
parsed_output_messages_str = pprint.pformat({k: m for k, m in parsed_outputs.items()},
|
312 |
indent=4)
|
313 |
log.info(
|
OpenAIChatAtomicFlow.yaml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# This is an abstract flow, therefore some required fields are
|
2 |
|
3 |
n_api_retries: 6
|
4 |
wait_time_between_retries: 20
|
|
|
1 |
+
# This is an abstract flow, therefore some required fields are not defined (and must be defined by the concrete flow)
|
2 |
|
3 |
n_api_retries: 6
|
4 |
wait_time_between_retries: 20
|