VAE / main.py
marsfu2009's picture
Upload 3 files
555e103
from time import time
import torch
import torch.nn.functional as F
from torchvision.transforms import ToPILImage
from dldemos.VAE.load_celebA import get_dataloader
from dldemos.VAE.model import VAE
# Hyperparameters
n_epochs = 10
kl_weight = 0.00025
lr = 0.005
def loss_fn(y, y_hat, mean, logvar):
recons_loss = F.mse_loss(y_hat, y)
kl_loss = torch.mean(
-0.5 * torch.sum(1 + logvar - mean**2 - torch.exp(logvar), 1), 0)
loss = recons_loss + kl_loss * kl_weight
return loss
def train(device, dataloader, model):
optimizer = torch.optim.Adam(model.parameters(), lr)
dataset_len = len(dataloader.dataset)
begin_time = time()
# train
for i in range(n_epochs):
loss_sum = 0
for x in dataloader:
x = x.to(device)
y_hat, mean, logvar = model(x)
loss = loss_fn(x, y_hat, mean, logvar)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_sum += loss
loss_sum /= dataset_len
training_time = time() - begin_time
minute = int(training_time // 60)
second = int(training_time % 60)
print(f'epoch {i}: loss {loss_sum} {minute}:{second}')
torch.save(model.state_dict(), 'dldemos/VAE/model.pth')
def reconstruct(device, dataloader, model):
model.eval()
batch = next(iter(dataloader))
x = batch[0:1, ...].to(device)
output = model(x)[0]
output = output[0].detach().cpu()
input = batch[0].detach().cpu()
combined = torch.cat((output, input), 1)
img = ToPILImage()(combined)
img.save('work_dirs/tmp.jpg')
def generate(device, model):
model.eval()
output = model.sample(device)
output = output[0].detach().cpu()
img = ToPILImage()(output)
img.save('work_dirs/tmp.jpg')
def main():
device = 'cuda:0'
dataloader = get_dataloader()
model = VAE().to(device)
# If you obtain the ckpt, load it
model.load_state_dict(torch.load('dldemos/VAE/model.pth', 'cuda:0'))
# Choose the function
train(device, dataloader, model)
reconstruct(device, dataloader, model)
generate(device, model)
if __name__ == '__main__':
main()