marmoh2002 commited on
Commit
c70c048
1 Parent(s): 3a7184e

Upload processor

Browse files
added_tokens.json ADDED
@@ -0,0 +1,1026 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</cap>": 51270,
3
+ "</dcap>": 51274,
4
+ "</grounding>": 51276,
5
+ "</ncap>": 51272,
6
+ "</ocr>": 50268,
7
+ "</od>": 50266,
8
+ "</poly>": 51287,
9
+ "</proposal>": 51285,
10
+ "</region_cap>": 51281,
11
+ "</region_to_desciption>": 51283,
12
+ "</seg>": 51278,
13
+ "<and>": 51288,
14
+ "<cap>": 51269,
15
+ "<dcap>": 51273,
16
+ "<grounding>": 51275,
17
+ "<loc_0>": 50269,
18
+ "<loc_100>": 50369,
19
+ "<loc_101>": 50370,
20
+ "<loc_102>": 50371,
21
+ "<loc_103>": 50372,
22
+ "<loc_104>": 50373,
23
+ "<loc_105>": 50374,
24
+ "<loc_106>": 50375,
25
+ "<loc_107>": 50376,
26
+ "<loc_108>": 50377,
27
+ "<loc_109>": 50378,
28
+ "<loc_10>": 50279,
29
+ "<loc_110>": 50379,
30
+ "<loc_111>": 50380,
31
+ "<loc_112>": 50381,
32
+ "<loc_113>": 50382,
33
+ "<loc_114>": 50383,
34
+ "<loc_115>": 50384,
35
+ "<loc_116>": 50385,
36
+ "<loc_117>": 50386,
37
+ "<loc_118>": 50387,
38
+ "<loc_119>": 50388,
39
+ "<loc_11>": 50280,
40
+ "<loc_120>": 50389,
41
+ "<loc_121>": 50390,
42
+ "<loc_122>": 50391,
43
+ "<loc_123>": 50392,
44
+ "<loc_124>": 50393,
45
+ "<loc_125>": 50394,
46
+ "<loc_126>": 50395,
47
+ "<loc_127>": 50396,
48
+ "<loc_128>": 50397,
49
+ "<loc_129>": 50398,
50
+ "<loc_12>": 50281,
51
+ "<loc_130>": 50399,
52
+ "<loc_131>": 50400,
53
+ "<loc_132>": 50401,
54
+ "<loc_133>": 50402,
55
+ "<loc_134>": 50403,
56
+ "<loc_135>": 50404,
57
+ "<loc_136>": 50405,
58
+ "<loc_137>": 50406,
59
+ "<loc_138>": 50407,
60
+ "<loc_139>": 50408,
61
+ "<loc_13>": 50282,
62
+ "<loc_140>": 50409,
63
+ "<loc_141>": 50410,
64
+ "<loc_142>": 50411,
65
+ "<loc_143>": 50412,
66
+ "<loc_144>": 50413,
67
+ "<loc_145>": 50414,
68
+ "<loc_146>": 50415,
69
+ "<loc_147>": 50416,
70
+ "<loc_148>": 50417,
71
+ "<loc_149>": 50418,
72
+ "<loc_14>": 50283,
73
+ "<loc_150>": 50419,
74
+ "<loc_151>": 50420,
75
+ "<loc_152>": 50421,
76
+ "<loc_153>": 50422,
77
+ "<loc_154>": 50423,
78
+ "<loc_155>": 50424,
79
+ "<loc_156>": 50425,
80
+ "<loc_157>": 50426,
81
+ "<loc_158>": 50427,
82
+ "<loc_159>": 50428,
83
+ "<loc_15>": 50284,
84
+ "<loc_160>": 50429,
85
+ "<loc_161>": 50430,
86
+ "<loc_162>": 50431,
87
+ "<loc_163>": 50432,
88
+ "<loc_164>": 50433,
89
+ "<loc_165>": 50434,
90
+ "<loc_166>": 50435,
91
+ "<loc_167>": 50436,
92
+ "<loc_168>": 50437,
93
+ "<loc_169>": 50438,
94
+ "<loc_16>": 50285,
95
+ "<loc_170>": 50439,
96
+ "<loc_171>": 50440,
97
+ "<loc_172>": 50441,
98
+ "<loc_173>": 50442,
99
+ "<loc_174>": 50443,
100
+ "<loc_175>": 50444,
101
+ "<loc_176>": 50445,
102
+ "<loc_177>": 50446,
103
+ "<loc_178>": 50447,
104
+ "<loc_179>": 50448,
105
+ "<loc_17>": 50286,
106
+ "<loc_180>": 50449,
107
+ "<loc_181>": 50450,
108
+ "<loc_182>": 50451,
109
+ "<loc_183>": 50452,
110
+ "<loc_184>": 50453,
111
+ "<loc_185>": 50454,
112
+ "<loc_186>": 50455,
113
+ "<loc_187>": 50456,
114
+ "<loc_188>": 50457,
115
+ "<loc_189>": 50458,
116
+ "<loc_18>": 50287,
117
+ "<loc_190>": 50459,
118
+ "<loc_191>": 50460,
119
+ "<loc_192>": 50461,
120
+ "<loc_193>": 50462,
121
+ "<loc_194>": 50463,
122
+ "<loc_195>": 50464,
123
+ "<loc_196>": 50465,
124
+ "<loc_197>": 50466,
125
+ "<loc_198>": 50467,
126
+ "<loc_199>": 50468,
127
+ "<loc_19>": 50288,
128
+ "<loc_1>": 50270,
129
+ "<loc_200>": 50469,
130
+ "<loc_201>": 50470,
131
+ "<loc_202>": 50471,
132
+ "<loc_203>": 50472,
133
+ "<loc_204>": 50473,
134
+ "<loc_205>": 50474,
135
+ "<loc_206>": 50475,
136
+ "<loc_207>": 50476,
137
+ "<loc_208>": 50477,
138
+ "<loc_209>": 50478,
139
+ "<loc_20>": 50289,
140
+ "<loc_210>": 50479,
141
+ "<loc_211>": 50480,
142
+ "<loc_212>": 50481,
143
+ "<loc_213>": 50482,
144
+ "<loc_214>": 50483,
145
+ "<loc_215>": 50484,
146
+ "<loc_216>": 50485,
147
+ "<loc_217>": 50486,
148
+ "<loc_218>": 50487,
149
+ "<loc_219>": 50488,
150
+ "<loc_21>": 50290,
151
+ "<loc_220>": 50489,
152
+ "<loc_221>": 50490,
153
+ "<loc_222>": 50491,
154
+ "<loc_223>": 50492,
155
+ "<loc_224>": 50493,
156
+ "<loc_225>": 50494,
157
+ "<loc_226>": 50495,
158
+ "<loc_227>": 50496,
159
+ "<loc_228>": 50497,
160
+ "<loc_229>": 50498,
161
+ "<loc_22>": 50291,
162
+ "<loc_230>": 50499,
163
+ "<loc_231>": 50500,
164
+ "<loc_232>": 50501,
165
+ "<loc_233>": 50502,
166
+ "<loc_234>": 50503,
167
+ "<loc_235>": 50504,
168
+ "<loc_236>": 50505,
169
+ "<loc_237>": 50506,
170
+ "<loc_238>": 50507,
171
+ "<loc_239>": 50508,
172
+ "<loc_23>": 50292,
173
+ "<loc_240>": 50509,
174
+ "<loc_241>": 50510,
175
+ "<loc_242>": 50511,
176
+ "<loc_243>": 50512,
177
+ "<loc_244>": 50513,
178
+ "<loc_245>": 50514,
179
+ "<loc_246>": 50515,
180
+ "<loc_247>": 50516,
181
+ "<loc_248>": 50517,
182
+ "<loc_249>": 50518,
183
+ "<loc_24>": 50293,
184
+ "<loc_250>": 50519,
185
+ "<loc_251>": 50520,
186
+ "<loc_252>": 50521,
187
+ "<loc_253>": 50522,
188
+ "<loc_254>": 50523,
189
+ "<loc_255>": 50524,
190
+ "<loc_256>": 50525,
191
+ "<loc_257>": 50526,
192
+ "<loc_258>": 50527,
193
+ "<loc_259>": 50528,
194
+ "<loc_25>": 50294,
195
+ "<loc_260>": 50529,
196
+ "<loc_261>": 50530,
197
+ "<loc_262>": 50531,
198
+ "<loc_263>": 50532,
199
+ "<loc_264>": 50533,
200
+ "<loc_265>": 50534,
201
+ "<loc_266>": 50535,
202
+ "<loc_267>": 50536,
203
+ "<loc_268>": 50537,
204
+ "<loc_269>": 50538,
205
+ "<loc_26>": 50295,
206
+ "<loc_270>": 50539,
207
+ "<loc_271>": 50540,
208
+ "<loc_272>": 50541,
209
+ "<loc_273>": 50542,
210
+ "<loc_274>": 50543,
211
+ "<loc_275>": 50544,
212
+ "<loc_276>": 50545,
213
+ "<loc_277>": 50546,
214
+ "<loc_278>": 50547,
215
+ "<loc_279>": 50548,
216
+ "<loc_27>": 50296,
217
+ "<loc_280>": 50549,
218
+ "<loc_281>": 50550,
219
+ "<loc_282>": 50551,
220
+ "<loc_283>": 50552,
221
+ "<loc_284>": 50553,
222
+ "<loc_285>": 50554,
223
+ "<loc_286>": 50555,
224
+ "<loc_287>": 50556,
225
+ "<loc_288>": 50557,
226
+ "<loc_289>": 50558,
227
+ "<loc_28>": 50297,
228
+ "<loc_290>": 50559,
229
+ "<loc_291>": 50560,
230
+ "<loc_292>": 50561,
231
+ "<loc_293>": 50562,
232
+ "<loc_294>": 50563,
233
+ "<loc_295>": 50564,
234
+ "<loc_296>": 50565,
235
+ "<loc_297>": 50566,
236
+ "<loc_298>": 50567,
237
+ "<loc_299>": 50568,
238
+ "<loc_29>": 50298,
239
+ "<loc_2>": 50271,
240
+ "<loc_300>": 50569,
241
+ "<loc_301>": 50570,
242
+ "<loc_302>": 50571,
243
+ "<loc_303>": 50572,
244
+ "<loc_304>": 50573,
245
+ "<loc_305>": 50574,
246
+ "<loc_306>": 50575,
247
+ "<loc_307>": 50576,
248
+ "<loc_308>": 50577,
249
+ "<loc_309>": 50578,
250
+ "<loc_30>": 50299,
251
+ "<loc_310>": 50579,
252
+ "<loc_311>": 50580,
253
+ "<loc_312>": 50581,
254
+ "<loc_313>": 50582,
255
+ "<loc_314>": 50583,
256
+ "<loc_315>": 50584,
257
+ "<loc_316>": 50585,
258
+ "<loc_317>": 50586,
259
+ "<loc_318>": 50587,
260
+ "<loc_319>": 50588,
261
+ "<loc_31>": 50300,
262
+ "<loc_320>": 50589,
263
+ "<loc_321>": 50590,
264
+ "<loc_322>": 50591,
265
+ "<loc_323>": 50592,
266
+ "<loc_324>": 50593,
267
+ "<loc_325>": 50594,
268
+ "<loc_326>": 50595,
269
+ "<loc_327>": 50596,
270
+ "<loc_328>": 50597,
271
+ "<loc_329>": 50598,
272
+ "<loc_32>": 50301,
273
+ "<loc_330>": 50599,
274
+ "<loc_331>": 50600,
275
+ "<loc_332>": 50601,
276
+ "<loc_333>": 50602,
277
+ "<loc_334>": 50603,
278
+ "<loc_335>": 50604,
279
+ "<loc_336>": 50605,
280
+ "<loc_337>": 50606,
281
+ "<loc_338>": 50607,
282
+ "<loc_339>": 50608,
283
+ "<loc_33>": 50302,
284
+ "<loc_340>": 50609,
285
+ "<loc_341>": 50610,
286
+ "<loc_342>": 50611,
287
+ "<loc_343>": 50612,
288
+ "<loc_344>": 50613,
289
+ "<loc_345>": 50614,
290
+ "<loc_346>": 50615,
291
+ "<loc_347>": 50616,
292
+ "<loc_348>": 50617,
293
+ "<loc_349>": 50618,
294
+ "<loc_34>": 50303,
295
+ "<loc_350>": 50619,
296
+ "<loc_351>": 50620,
297
+ "<loc_352>": 50621,
298
+ "<loc_353>": 50622,
299
+ "<loc_354>": 50623,
300
+ "<loc_355>": 50624,
301
+ "<loc_356>": 50625,
302
+ "<loc_357>": 50626,
303
+ "<loc_358>": 50627,
304
+ "<loc_359>": 50628,
305
+ "<loc_35>": 50304,
306
+ "<loc_360>": 50629,
307
+ "<loc_361>": 50630,
308
+ "<loc_362>": 50631,
309
+ "<loc_363>": 50632,
310
+ "<loc_364>": 50633,
311
+ "<loc_365>": 50634,
312
+ "<loc_366>": 50635,
313
+ "<loc_367>": 50636,
314
+ "<loc_368>": 50637,
315
+ "<loc_369>": 50638,
316
+ "<loc_36>": 50305,
317
+ "<loc_370>": 50639,
318
+ "<loc_371>": 50640,
319
+ "<loc_372>": 50641,
320
+ "<loc_373>": 50642,
321
+ "<loc_374>": 50643,
322
+ "<loc_375>": 50644,
323
+ "<loc_376>": 50645,
324
+ "<loc_377>": 50646,
325
+ "<loc_378>": 50647,
326
+ "<loc_379>": 50648,
327
+ "<loc_37>": 50306,
328
+ "<loc_380>": 50649,
329
+ "<loc_381>": 50650,
330
+ "<loc_382>": 50651,
331
+ "<loc_383>": 50652,
332
+ "<loc_384>": 50653,
333
+ "<loc_385>": 50654,
334
+ "<loc_386>": 50655,
335
+ "<loc_387>": 50656,
336
+ "<loc_388>": 50657,
337
+ "<loc_389>": 50658,
338
+ "<loc_38>": 50307,
339
+ "<loc_390>": 50659,
340
+ "<loc_391>": 50660,
341
+ "<loc_392>": 50661,
342
+ "<loc_393>": 50662,
343
+ "<loc_394>": 50663,
344
+ "<loc_395>": 50664,
345
+ "<loc_396>": 50665,
346
+ "<loc_397>": 50666,
347
+ "<loc_398>": 50667,
348
+ "<loc_399>": 50668,
349
+ "<loc_39>": 50308,
350
+ "<loc_3>": 50272,
351
+ "<loc_400>": 50669,
352
+ "<loc_401>": 50670,
353
+ "<loc_402>": 50671,
354
+ "<loc_403>": 50672,
355
+ "<loc_404>": 50673,
356
+ "<loc_405>": 50674,
357
+ "<loc_406>": 50675,
358
+ "<loc_407>": 50676,
359
+ "<loc_408>": 50677,
360
+ "<loc_409>": 50678,
361
+ "<loc_40>": 50309,
362
+ "<loc_410>": 50679,
363
+ "<loc_411>": 50680,
364
+ "<loc_412>": 50681,
365
+ "<loc_413>": 50682,
366
+ "<loc_414>": 50683,
367
+ "<loc_415>": 50684,
368
+ "<loc_416>": 50685,
369
+ "<loc_417>": 50686,
370
+ "<loc_418>": 50687,
371
+ "<loc_419>": 50688,
372
+ "<loc_41>": 50310,
373
+ "<loc_420>": 50689,
374
+ "<loc_421>": 50690,
375
+ "<loc_422>": 50691,
376
+ "<loc_423>": 50692,
377
+ "<loc_424>": 50693,
378
+ "<loc_425>": 50694,
379
+ "<loc_426>": 50695,
380
+ "<loc_427>": 50696,
381
+ "<loc_428>": 50697,
382
+ "<loc_429>": 50698,
383
+ "<loc_42>": 50311,
384
+ "<loc_430>": 50699,
385
+ "<loc_431>": 50700,
386
+ "<loc_432>": 50701,
387
+ "<loc_433>": 50702,
388
+ "<loc_434>": 50703,
389
+ "<loc_435>": 50704,
390
+ "<loc_436>": 50705,
391
+ "<loc_437>": 50706,
392
+ "<loc_438>": 50707,
393
+ "<loc_439>": 50708,
394
+ "<loc_43>": 50312,
395
+ "<loc_440>": 50709,
396
+ "<loc_441>": 50710,
397
+ "<loc_442>": 50711,
398
+ "<loc_443>": 50712,
399
+ "<loc_444>": 50713,
400
+ "<loc_445>": 50714,
401
+ "<loc_446>": 50715,
402
+ "<loc_447>": 50716,
403
+ "<loc_448>": 50717,
404
+ "<loc_449>": 50718,
405
+ "<loc_44>": 50313,
406
+ "<loc_450>": 50719,
407
+ "<loc_451>": 50720,
408
+ "<loc_452>": 50721,
409
+ "<loc_453>": 50722,
410
+ "<loc_454>": 50723,
411
+ "<loc_455>": 50724,
412
+ "<loc_456>": 50725,
413
+ "<loc_457>": 50726,
414
+ "<loc_458>": 50727,
415
+ "<loc_459>": 50728,
416
+ "<loc_45>": 50314,
417
+ "<loc_460>": 50729,
418
+ "<loc_461>": 50730,
419
+ "<loc_462>": 50731,
420
+ "<loc_463>": 50732,
421
+ "<loc_464>": 50733,
422
+ "<loc_465>": 50734,
423
+ "<loc_466>": 50735,
424
+ "<loc_467>": 50736,
425
+ "<loc_468>": 50737,
426
+ "<loc_469>": 50738,
427
+ "<loc_46>": 50315,
428
+ "<loc_470>": 50739,
429
+ "<loc_471>": 50740,
430
+ "<loc_472>": 50741,
431
+ "<loc_473>": 50742,
432
+ "<loc_474>": 50743,
433
+ "<loc_475>": 50744,
434
+ "<loc_476>": 50745,
435
+ "<loc_477>": 50746,
436
+ "<loc_478>": 50747,
437
+ "<loc_479>": 50748,
438
+ "<loc_47>": 50316,
439
+ "<loc_480>": 50749,
440
+ "<loc_481>": 50750,
441
+ "<loc_482>": 50751,
442
+ "<loc_483>": 50752,
443
+ "<loc_484>": 50753,
444
+ "<loc_485>": 50754,
445
+ "<loc_486>": 50755,
446
+ "<loc_487>": 50756,
447
+ "<loc_488>": 50757,
448
+ "<loc_489>": 50758,
449
+ "<loc_48>": 50317,
450
+ "<loc_490>": 50759,
451
+ "<loc_491>": 50760,
452
+ "<loc_492>": 50761,
453
+ "<loc_493>": 50762,
454
+ "<loc_494>": 50763,
455
+ "<loc_495>": 50764,
456
+ "<loc_496>": 50765,
457
+ "<loc_497>": 50766,
458
+ "<loc_498>": 50767,
459
+ "<loc_499>": 50768,
460
+ "<loc_49>": 50318,
461
+ "<loc_4>": 50273,
462
+ "<loc_500>": 50769,
463
+ "<loc_501>": 50770,
464
+ "<loc_502>": 50771,
465
+ "<loc_503>": 50772,
466
+ "<loc_504>": 50773,
467
+ "<loc_505>": 50774,
468
+ "<loc_506>": 50775,
469
+ "<loc_507>": 50776,
470
+ "<loc_508>": 50777,
471
+ "<loc_509>": 50778,
472
+ "<loc_50>": 50319,
473
+ "<loc_510>": 50779,
474
+ "<loc_511>": 50780,
475
+ "<loc_512>": 50781,
476
+ "<loc_513>": 50782,
477
+ "<loc_514>": 50783,
478
+ "<loc_515>": 50784,
479
+ "<loc_516>": 50785,
480
+ "<loc_517>": 50786,
481
+ "<loc_518>": 50787,
482
+ "<loc_519>": 50788,
483
+ "<loc_51>": 50320,
484
+ "<loc_520>": 50789,
485
+ "<loc_521>": 50790,
486
+ "<loc_522>": 50791,
487
+ "<loc_523>": 50792,
488
+ "<loc_524>": 50793,
489
+ "<loc_525>": 50794,
490
+ "<loc_526>": 50795,
491
+ "<loc_527>": 50796,
492
+ "<loc_528>": 50797,
493
+ "<loc_529>": 50798,
494
+ "<loc_52>": 50321,
495
+ "<loc_530>": 50799,
496
+ "<loc_531>": 50800,
497
+ "<loc_532>": 50801,
498
+ "<loc_533>": 50802,
499
+ "<loc_534>": 50803,
500
+ "<loc_535>": 50804,
501
+ "<loc_536>": 50805,
502
+ "<loc_537>": 50806,
503
+ "<loc_538>": 50807,
504
+ "<loc_539>": 50808,
505
+ "<loc_53>": 50322,
506
+ "<loc_540>": 50809,
507
+ "<loc_541>": 50810,
508
+ "<loc_542>": 50811,
509
+ "<loc_543>": 50812,
510
+ "<loc_544>": 50813,
511
+ "<loc_545>": 50814,
512
+ "<loc_546>": 50815,
513
+ "<loc_547>": 50816,
514
+ "<loc_548>": 50817,
515
+ "<loc_549>": 50818,
516
+ "<loc_54>": 50323,
517
+ "<loc_550>": 50819,
518
+ "<loc_551>": 50820,
519
+ "<loc_552>": 50821,
520
+ "<loc_553>": 50822,
521
+ "<loc_554>": 50823,
522
+ "<loc_555>": 50824,
523
+ "<loc_556>": 50825,
524
+ "<loc_557>": 50826,
525
+ "<loc_558>": 50827,
526
+ "<loc_559>": 50828,
527
+ "<loc_55>": 50324,
528
+ "<loc_560>": 50829,
529
+ "<loc_561>": 50830,
530
+ "<loc_562>": 50831,
531
+ "<loc_563>": 50832,
532
+ "<loc_564>": 50833,
533
+ "<loc_565>": 50834,
534
+ "<loc_566>": 50835,
535
+ "<loc_567>": 50836,
536
+ "<loc_568>": 50837,
537
+ "<loc_569>": 50838,
538
+ "<loc_56>": 50325,
539
+ "<loc_570>": 50839,
540
+ "<loc_571>": 50840,
541
+ "<loc_572>": 50841,
542
+ "<loc_573>": 50842,
543
+ "<loc_574>": 50843,
544
+ "<loc_575>": 50844,
545
+ "<loc_576>": 50845,
546
+ "<loc_577>": 50846,
547
+ "<loc_578>": 50847,
548
+ "<loc_579>": 50848,
549
+ "<loc_57>": 50326,
550
+ "<loc_580>": 50849,
551
+ "<loc_581>": 50850,
552
+ "<loc_582>": 50851,
553
+ "<loc_583>": 50852,
554
+ "<loc_584>": 50853,
555
+ "<loc_585>": 50854,
556
+ "<loc_586>": 50855,
557
+ "<loc_587>": 50856,
558
+ "<loc_588>": 50857,
559
+ "<loc_589>": 50858,
560
+ "<loc_58>": 50327,
561
+ "<loc_590>": 50859,
562
+ "<loc_591>": 50860,
563
+ "<loc_592>": 50861,
564
+ "<loc_593>": 50862,
565
+ "<loc_594>": 50863,
566
+ "<loc_595>": 50864,
567
+ "<loc_596>": 50865,
568
+ "<loc_597>": 50866,
569
+ "<loc_598>": 50867,
570
+ "<loc_599>": 50868,
571
+ "<loc_59>": 50328,
572
+ "<loc_5>": 50274,
573
+ "<loc_600>": 50869,
574
+ "<loc_601>": 50870,
575
+ "<loc_602>": 50871,
576
+ "<loc_603>": 50872,
577
+ "<loc_604>": 50873,
578
+ "<loc_605>": 50874,
579
+ "<loc_606>": 50875,
580
+ "<loc_607>": 50876,
581
+ "<loc_608>": 50877,
582
+ "<loc_609>": 50878,
583
+ "<loc_60>": 50329,
584
+ "<loc_610>": 50879,
585
+ "<loc_611>": 50880,
586
+ "<loc_612>": 50881,
587
+ "<loc_613>": 50882,
588
+ "<loc_614>": 50883,
589
+ "<loc_615>": 50884,
590
+ "<loc_616>": 50885,
591
+ "<loc_617>": 50886,
592
+ "<loc_618>": 50887,
593
+ "<loc_619>": 50888,
594
+ "<loc_61>": 50330,
595
+ "<loc_620>": 50889,
596
+ "<loc_621>": 50890,
597
+ "<loc_622>": 50891,
598
+ "<loc_623>": 50892,
599
+ "<loc_624>": 50893,
600
+ "<loc_625>": 50894,
601
+ "<loc_626>": 50895,
602
+ "<loc_627>": 50896,
603
+ "<loc_628>": 50897,
604
+ "<loc_629>": 50898,
605
+ "<loc_62>": 50331,
606
+ "<loc_630>": 50899,
607
+ "<loc_631>": 50900,
608
+ "<loc_632>": 50901,
609
+ "<loc_633>": 50902,
610
+ "<loc_634>": 50903,
611
+ "<loc_635>": 50904,
612
+ "<loc_636>": 50905,
613
+ "<loc_637>": 50906,
614
+ "<loc_638>": 50907,
615
+ "<loc_639>": 50908,
616
+ "<loc_63>": 50332,
617
+ "<loc_640>": 50909,
618
+ "<loc_641>": 50910,
619
+ "<loc_642>": 50911,
620
+ "<loc_643>": 50912,
621
+ "<loc_644>": 50913,
622
+ "<loc_645>": 50914,
623
+ "<loc_646>": 50915,
624
+ "<loc_647>": 50916,
625
+ "<loc_648>": 50917,
626
+ "<loc_649>": 50918,
627
+ "<loc_64>": 50333,
628
+ "<loc_650>": 50919,
629
+ "<loc_651>": 50920,
630
+ "<loc_652>": 50921,
631
+ "<loc_653>": 50922,
632
+ "<loc_654>": 50923,
633
+ "<loc_655>": 50924,
634
+ "<loc_656>": 50925,
635
+ "<loc_657>": 50926,
636
+ "<loc_658>": 50927,
637
+ "<loc_659>": 50928,
638
+ "<loc_65>": 50334,
639
+ "<loc_660>": 50929,
640
+ "<loc_661>": 50930,
641
+ "<loc_662>": 50931,
642
+ "<loc_663>": 50932,
643
+ "<loc_664>": 50933,
644
+ "<loc_665>": 50934,
645
+ "<loc_666>": 50935,
646
+ "<loc_667>": 50936,
647
+ "<loc_668>": 50937,
648
+ "<loc_669>": 50938,
649
+ "<loc_66>": 50335,
650
+ "<loc_670>": 50939,
651
+ "<loc_671>": 50940,
652
+ "<loc_672>": 50941,
653
+ "<loc_673>": 50942,
654
+ "<loc_674>": 50943,
655
+ "<loc_675>": 50944,
656
+ "<loc_676>": 50945,
657
+ "<loc_677>": 50946,
658
+ "<loc_678>": 50947,
659
+ "<loc_679>": 50948,
660
+ "<loc_67>": 50336,
661
+ "<loc_680>": 50949,
662
+ "<loc_681>": 50950,
663
+ "<loc_682>": 50951,
664
+ "<loc_683>": 50952,
665
+ "<loc_684>": 50953,
666
+ "<loc_685>": 50954,
667
+ "<loc_686>": 50955,
668
+ "<loc_687>": 50956,
669
+ "<loc_688>": 50957,
670
+ "<loc_689>": 50958,
671
+ "<loc_68>": 50337,
672
+ "<loc_690>": 50959,
673
+ "<loc_691>": 50960,
674
+ "<loc_692>": 50961,
675
+ "<loc_693>": 50962,
676
+ "<loc_694>": 50963,
677
+ "<loc_695>": 50964,
678
+ "<loc_696>": 50965,
679
+ "<loc_697>": 50966,
680
+ "<loc_698>": 50967,
681
+ "<loc_699>": 50968,
682
+ "<loc_69>": 50338,
683
+ "<loc_6>": 50275,
684
+ "<loc_700>": 50969,
685
+ "<loc_701>": 50970,
686
+ "<loc_702>": 50971,
687
+ "<loc_703>": 50972,
688
+ "<loc_704>": 50973,
689
+ "<loc_705>": 50974,
690
+ "<loc_706>": 50975,
691
+ "<loc_707>": 50976,
692
+ "<loc_708>": 50977,
693
+ "<loc_709>": 50978,
694
+ "<loc_70>": 50339,
695
+ "<loc_710>": 50979,
696
+ "<loc_711>": 50980,
697
+ "<loc_712>": 50981,
698
+ "<loc_713>": 50982,
699
+ "<loc_714>": 50983,
700
+ "<loc_715>": 50984,
701
+ "<loc_716>": 50985,
702
+ "<loc_717>": 50986,
703
+ "<loc_718>": 50987,
704
+ "<loc_719>": 50988,
705
+ "<loc_71>": 50340,
706
+ "<loc_720>": 50989,
707
+ "<loc_721>": 50990,
708
+ "<loc_722>": 50991,
709
+ "<loc_723>": 50992,
710
+ "<loc_724>": 50993,
711
+ "<loc_725>": 50994,
712
+ "<loc_726>": 50995,
713
+ "<loc_727>": 50996,
714
+ "<loc_728>": 50997,
715
+ "<loc_729>": 50998,
716
+ "<loc_72>": 50341,
717
+ "<loc_730>": 50999,
718
+ "<loc_731>": 51000,
719
+ "<loc_732>": 51001,
720
+ "<loc_733>": 51002,
721
+ "<loc_734>": 51003,
722
+ "<loc_735>": 51004,
723
+ "<loc_736>": 51005,
724
+ "<loc_737>": 51006,
725
+ "<loc_738>": 51007,
726
+ "<loc_739>": 51008,
727
+ "<loc_73>": 50342,
728
+ "<loc_740>": 51009,
729
+ "<loc_741>": 51010,
730
+ "<loc_742>": 51011,
731
+ "<loc_743>": 51012,
732
+ "<loc_744>": 51013,
733
+ "<loc_745>": 51014,
734
+ "<loc_746>": 51015,
735
+ "<loc_747>": 51016,
736
+ "<loc_748>": 51017,
737
+ "<loc_749>": 51018,
738
+ "<loc_74>": 50343,
739
+ "<loc_750>": 51019,
740
+ "<loc_751>": 51020,
741
+ "<loc_752>": 51021,
742
+ "<loc_753>": 51022,
743
+ "<loc_754>": 51023,
744
+ "<loc_755>": 51024,
745
+ "<loc_756>": 51025,
746
+ "<loc_757>": 51026,
747
+ "<loc_758>": 51027,
748
+ "<loc_759>": 51028,
749
+ "<loc_75>": 50344,
750
+ "<loc_760>": 51029,
751
+ "<loc_761>": 51030,
752
+ "<loc_762>": 51031,
753
+ "<loc_763>": 51032,
754
+ "<loc_764>": 51033,
755
+ "<loc_765>": 51034,
756
+ "<loc_766>": 51035,
757
+ "<loc_767>": 51036,
758
+ "<loc_768>": 51037,
759
+ "<loc_769>": 51038,
760
+ "<loc_76>": 50345,
761
+ "<loc_770>": 51039,
762
+ "<loc_771>": 51040,
763
+ "<loc_772>": 51041,
764
+ "<loc_773>": 51042,
765
+ "<loc_774>": 51043,
766
+ "<loc_775>": 51044,
767
+ "<loc_776>": 51045,
768
+ "<loc_777>": 51046,
769
+ "<loc_778>": 51047,
770
+ "<loc_779>": 51048,
771
+ "<loc_77>": 50346,
772
+ "<loc_780>": 51049,
773
+ "<loc_781>": 51050,
774
+ "<loc_782>": 51051,
775
+ "<loc_783>": 51052,
776
+ "<loc_784>": 51053,
777
+ "<loc_785>": 51054,
778
+ "<loc_786>": 51055,
779
+ "<loc_787>": 51056,
780
+ "<loc_788>": 51057,
781
+ "<loc_789>": 51058,
782
+ "<loc_78>": 50347,
783
+ "<loc_790>": 51059,
784
+ "<loc_791>": 51060,
785
+ "<loc_792>": 51061,
786
+ "<loc_793>": 51062,
787
+ "<loc_794>": 51063,
788
+ "<loc_795>": 51064,
789
+ "<loc_796>": 51065,
790
+ "<loc_797>": 51066,
791
+ "<loc_798>": 51067,
792
+ "<loc_799>": 51068,
793
+ "<loc_79>": 50348,
794
+ "<loc_7>": 50276,
795
+ "<loc_800>": 51069,
796
+ "<loc_801>": 51070,
797
+ "<loc_802>": 51071,
798
+ "<loc_803>": 51072,
799
+ "<loc_804>": 51073,
800
+ "<loc_805>": 51074,
801
+ "<loc_806>": 51075,
802
+ "<loc_807>": 51076,
803
+ "<loc_808>": 51077,
804
+ "<loc_809>": 51078,
805
+ "<loc_80>": 50349,
806
+ "<loc_810>": 51079,
807
+ "<loc_811>": 51080,
808
+ "<loc_812>": 51081,
809
+ "<loc_813>": 51082,
810
+ "<loc_814>": 51083,
811
+ "<loc_815>": 51084,
812
+ "<loc_816>": 51085,
813
+ "<loc_817>": 51086,
814
+ "<loc_818>": 51087,
815
+ "<loc_819>": 51088,
816
+ "<loc_81>": 50350,
817
+ "<loc_820>": 51089,
818
+ "<loc_821>": 51090,
819
+ "<loc_822>": 51091,
820
+ "<loc_823>": 51092,
821
+ "<loc_824>": 51093,
822
+ "<loc_825>": 51094,
823
+ "<loc_826>": 51095,
824
+ "<loc_827>": 51096,
825
+ "<loc_828>": 51097,
826
+ "<loc_829>": 51098,
827
+ "<loc_82>": 50351,
828
+ "<loc_830>": 51099,
829
+ "<loc_831>": 51100,
830
+ "<loc_832>": 51101,
831
+ "<loc_833>": 51102,
832
+ "<loc_834>": 51103,
833
+ "<loc_835>": 51104,
834
+ "<loc_836>": 51105,
835
+ "<loc_837>": 51106,
836
+ "<loc_838>": 51107,
837
+ "<loc_839>": 51108,
838
+ "<loc_83>": 50352,
839
+ "<loc_840>": 51109,
840
+ "<loc_841>": 51110,
841
+ "<loc_842>": 51111,
842
+ "<loc_843>": 51112,
843
+ "<loc_844>": 51113,
844
+ "<loc_845>": 51114,
845
+ "<loc_846>": 51115,
846
+ "<loc_847>": 51116,
847
+ "<loc_848>": 51117,
848
+ "<loc_849>": 51118,
849
+ "<loc_84>": 50353,
850
+ "<loc_850>": 51119,
851
+ "<loc_851>": 51120,
852
+ "<loc_852>": 51121,
853
+ "<loc_853>": 51122,
854
+ "<loc_854>": 51123,
855
+ "<loc_855>": 51124,
856
+ "<loc_856>": 51125,
857
+ "<loc_857>": 51126,
858
+ "<loc_858>": 51127,
859
+ "<loc_859>": 51128,
860
+ "<loc_85>": 50354,
861
+ "<loc_860>": 51129,
862
+ "<loc_861>": 51130,
863
+ "<loc_862>": 51131,
864
+ "<loc_863>": 51132,
865
+ "<loc_864>": 51133,
866
+ "<loc_865>": 51134,
867
+ "<loc_866>": 51135,
868
+ "<loc_867>": 51136,
869
+ "<loc_868>": 51137,
870
+ "<loc_869>": 51138,
871
+ "<loc_86>": 50355,
872
+ "<loc_870>": 51139,
873
+ "<loc_871>": 51140,
874
+ "<loc_872>": 51141,
875
+ "<loc_873>": 51142,
876
+ "<loc_874>": 51143,
877
+ "<loc_875>": 51144,
878
+ "<loc_876>": 51145,
879
+ "<loc_877>": 51146,
880
+ "<loc_878>": 51147,
881
+ "<loc_879>": 51148,
882
+ "<loc_87>": 50356,
883
+ "<loc_880>": 51149,
884
+ "<loc_881>": 51150,
885
+ "<loc_882>": 51151,
886
+ "<loc_883>": 51152,
887
+ "<loc_884>": 51153,
888
+ "<loc_885>": 51154,
889
+ "<loc_886>": 51155,
890
+ "<loc_887>": 51156,
891
+ "<loc_888>": 51157,
892
+ "<loc_889>": 51158,
893
+ "<loc_88>": 50357,
894
+ "<loc_890>": 51159,
895
+ "<loc_891>": 51160,
896
+ "<loc_892>": 51161,
897
+ "<loc_893>": 51162,
898
+ "<loc_894>": 51163,
899
+ "<loc_895>": 51164,
900
+ "<loc_896>": 51165,
901
+ "<loc_897>": 51166,
902
+ "<loc_898>": 51167,
903
+ "<loc_899>": 51168,
904
+ "<loc_89>": 50358,
905
+ "<loc_8>": 50277,
906
+ "<loc_900>": 51169,
907
+ "<loc_901>": 51170,
908
+ "<loc_902>": 51171,
909
+ "<loc_903>": 51172,
910
+ "<loc_904>": 51173,
911
+ "<loc_905>": 51174,
912
+ "<loc_906>": 51175,
913
+ "<loc_907>": 51176,
914
+ "<loc_908>": 51177,
915
+ "<loc_909>": 51178,
916
+ "<loc_90>": 50359,
917
+ "<loc_910>": 51179,
918
+ "<loc_911>": 51180,
919
+ "<loc_912>": 51181,
920
+ "<loc_913>": 51182,
921
+ "<loc_914>": 51183,
922
+ "<loc_915>": 51184,
923
+ "<loc_916>": 51185,
924
+ "<loc_917>": 51186,
925
+ "<loc_918>": 51187,
926
+ "<loc_919>": 51188,
927
+ "<loc_91>": 50360,
928
+ "<loc_920>": 51189,
929
+ "<loc_921>": 51190,
930
+ "<loc_922>": 51191,
931
+ "<loc_923>": 51192,
932
+ "<loc_924>": 51193,
933
+ "<loc_925>": 51194,
934
+ "<loc_926>": 51195,
935
+ "<loc_927>": 51196,
936
+ "<loc_928>": 51197,
937
+ "<loc_929>": 51198,
938
+ "<loc_92>": 50361,
939
+ "<loc_930>": 51199,
940
+ "<loc_931>": 51200,
941
+ "<loc_932>": 51201,
942
+ "<loc_933>": 51202,
943
+ "<loc_934>": 51203,
944
+ "<loc_935>": 51204,
945
+ "<loc_936>": 51205,
946
+ "<loc_937>": 51206,
947
+ "<loc_938>": 51207,
948
+ "<loc_939>": 51208,
949
+ "<loc_93>": 50362,
950
+ "<loc_940>": 51209,
951
+ "<loc_941>": 51210,
952
+ "<loc_942>": 51211,
953
+ "<loc_943>": 51212,
954
+ "<loc_944>": 51213,
955
+ "<loc_945>": 51214,
956
+ "<loc_946>": 51215,
957
+ "<loc_947>": 51216,
958
+ "<loc_948>": 51217,
959
+ "<loc_949>": 51218,
960
+ "<loc_94>": 50363,
961
+ "<loc_950>": 51219,
962
+ "<loc_951>": 51220,
963
+ "<loc_952>": 51221,
964
+ "<loc_953>": 51222,
965
+ "<loc_954>": 51223,
966
+ "<loc_955>": 51224,
967
+ "<loc_956>": 51225,
968
+ "<loc_957>": 51226,
969
+ "<loc_958>": 51227,
970
+ "<loc_959>": 51228,
971
+ "<loc_95>": 50364,
972
+ "<loc_960>": 51229,
973
+ "<loc_961>": 51230,
974
+ "<loc_962>": 51231,
975
+ "<loc_963>": 51232,
976
+ "<loc_964>": 51233,
977
+ "<loc_965>": 51234,
978
+ "<loc_966>": 51235,
979
+ "<loc_967>": 51236,
980
+ "<loc_968>": 51237,
981
+ "<loc_969>": 51238,
982
+ "<loc_96>": 50365,
983
+ "<loc_970>": 51239,
984
+ "<loc_971>": 51240,
985
+ "<loc_972>": 51241,
986
+ "<loc_973>": 51242,
987
+ "<loc_974>": 51243,
988
+ "<loc_975>": 51244,
989
+ "<loc_976>": 51245,
990
+ "<loc_977>": 51246,
991
+ "<loc_978>": 51247,
992
+ "<loc_979>": 51248,
993
+ "<loc_97>": 50366,
994
+ "<loc_980>": 51249,
995
+ "<loc_981>": 51250,
996
+ "<loc_982>": 51251,
997
+ "<loc_983>": 51252,
998
+ "<loc_984>": 51253,
999
+ "<loc_985>": 51254,
1000
+ "<loc_986>": 51255,
1001
+ "<loc_987>": 51256,
1002
+ "<loc_988>": 51257,
1003
+ "<loc_989>": 51258,
1004
+ "<loc_98>": 50367,
1005
+ "<loc_990>": 51259,
1006
+ "<loc_991>": 51260,
1007
+ "<loc_992>": 51261,
1008
+ "<loc_993>": 51262,
1009
+ "<loc_994>": 51263,
1010
+ "<loc_995>": 51264,
1011
+ "<loc_996>": 51265,
1012
+ "<loc_997>": 51266,
1013
+ "<loc_998>": 51267,
1014
+ "<loc_999>": 51268,
1015
+ "<loc_99>": 50368,
1016
+ "<loc_9>": 50278,
1017
+ "<ncap>": 51271,
1018
+ "<ocr>": 50267,
1019
+ "<od>": 50265,
1020
+ "<poly>": 51286,
1021
+ "<proposal>": 51284,
1022
+ "<region_cap>": 51280,
1023
+ "<region_to_desciption>": 51282,
1024
+ "<seg>": 51277,
1025
+ "<sep>": 51279
1026
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_florence2.Florence2Processor"
4
+ },
5
+ "crop_size": {
6
+ "height": 768,
7
+ "width": 768
8
+ },
9
+ "do_center_crop": false,
10
+ "do_convert_rgb": null,
11
+ "do_normalize": true,
12
+ "do_rescale": true,
13
+ "do_resize": true,
14
+ "image_mean": [
15
+ 0.485,
16
+ 0.456,
17
+ 0.406
18
+ ],
19
+ "image_processor_type": "CLIPImageProcessor",
20
+ "image_seq_length": 577,
21
+ "image_std": [
22
+ 0.229,
23
+ 0.224,
24
+ 0.225
25
+ ],
26
+ "processor_class": "Florence2Processor",
27
+ "resample": 3,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "size": {
30
+ "height": 768,
31
+ "width": 768
32
+ }
33
+ }
processing_florence2.py ADDED
@@ -0,0 +1,1088 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Florence-2.
17
+ """
18
+
19
+ import re
20
+ import logging
21
+ from typing import List, Optional, Union
22
+ import numpy as np
23
+
24
+ import torch
25
+
26
+ from transformers.feature_extraction_utils import BatchFeature
27
+ from transformers.image_utils import ImageInput, is_valid_image
28
+ from transformers.processing_utils import ProcessorMixin
29
+ from transformers.tokenization_utils_base import (
30
+ PaddingStrategy,
31
+ PreTokenizedInput,
32
+ TextInput,
33
+ TruncationStrategy,
34
+ )
35
+ from transformers.utils import TensorType
36
+
37
+
38
+ logger = logging.getLogger(__name__)
39
+
40
+ # Copied from transformers.models.idefics2.processing_idefics2.is_url
41
+ def is_url(val) -> bool:
42
+ return isinstance(val, str) and val.startswith("http")
43
+
44
+ # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
45
+ def is_image_or_image_url(elem):
46
+ return is_url(elem) or is_valid_image(elem)
47
+
48
+
49
+ def _is_str_or_image(elem):
50
+ return isinstance(elem, (str)) or is_image_or_image_url(elem)
51
+
52
+
53
+ class Florence2Processor(ProcessorMixin):
54
+ r"""
55
+ Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
56
+
57
+ [`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
58
+ [`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
59
+
60
+ Args:
61
+ image_processor ([`CLIPImageProcessor`], *optional*):
62
+ The image processor is a required input.
63
+ tokenizer ([`BartTokenizerFast`], *optional*):
64
+ The tokenizer is a required input.
65
+ """
66
+
67
+ attributes = ["image_processor", "tokenizer"]
68
+ image_processor_class = "CLIPImageProcessor"
69
+ tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
70
+
71
+ def __init__(
72
+ self,
73
+ image_processor=None,
74
+ tokenizer=None,
75
+ ):
76
+ if image_processor is None:
77
+ raise ValueError("You need to specify an `image_processor`.")
78
+ if tokenizer is None:
79
+ raise ValueError("You need to specify a `tokenizer`.")
80
+ if not hasattr(image_processor, "image_seq_length"):
81
+ raise ValueError("Image processor is missing an `image_seq_length` attribute.")
82
+
83
+ self.image_seq_length = image_processor.image_seq_length
84
+
85
+ tokens_to_add = {
86
+ 'additional_special_tokens': \
87
+ tokenizer.additional_special_tokens + \
88
+ ['<od>', '</od>', '<ocr>', '</ocr>'] + \
89
+ [f'<loc_{x}>' for x in range(1000)] + \
90
+ ['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
91
+ }
92
+ tokenizer.add_special_tokens(tokens_to_add)
93
+
94
+ self.tasks_answer_post_processing_type = {
95
+ '<OCR>': 'pure_text',
96
+ '<OCR_WITH_REGION>': 'ocr',
97
+ '<CAPTION>': 'pure_text',
98
+ '<DETAILED_CAPTION>': 'pure_text',
99
+ '<MORE_DETAILED_CAPTION>': 'pure_text',
100
+ '<OD>': 'description_with_bboxes',
101
+ '<DENSE_REGION_CAPTION>': 'description_with_bboxes',
102
+ '<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
103
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
104
+ '<REGION_TO_SEGMENTATION>': 'polygons',
105
+ '<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
106
+ '<REGION_TO_CATEGORY>': 'pure_text',
107
+ '<REGION_TO_DESCRIPTION>': 'pure_text',
108
+ '<REGION_TO_OCR>': 'pure_text',
109
+ '<REGION_PROPOSAL>': 'bboxes'
110
+ }
111
+
112
+ self.task_prompts_without_inputs = {
113
+ '<OCR>': 'What is the text in the image?',
114
+ '<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
115
+ '<CAPTION>': 'What does the image describe?',
116
+ '<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
117
+ '<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
118
+ '<OD>': 'Locate the objects with category name in the image.',
119
+ '<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
120
+ '<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
121
+ }
122
+
123
+ self.task_prompts_with_input = {
124
+ '<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
125
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
126
+ '<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
127
+ '<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
128
+ '<REGION_TO_CATEGORY>': 'What is the region {input}?',
129
+ '<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
130
+ '<REGION_TO_OCR>': 'What text is in the region {input}?',
131
+ }
132
+
133
+ self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
134
+
135
+
136
+ super().__init__(image_processor, tokenizer)
137
+
138
+ def _construct_prompts(self, text):
139
+ # replace the task tokens with the task prompts if task token is in the text
140
+ prompts = []
141
+ for _text in text:
142
+ # 1. fixed task prompts without additional inputs
143
+ for task_token, task_prompt in self.task_prompts_without_inputs.items():
144
+ if task_token in _text:
145
+ assert _text == task_token, f"Task token {task_token} should be the only token in the text."
146
+ _text = task_prompt
147
+ break
148
+ # 2. task prompts with additional inputs
149
+ for task_token, task_prompt in self.task_prompts_with_input.items():
150
+ if task_token in _text:
151
+ _text = task_prompt.format(input=_text.replace(task_token, ''))
152
+ break
153
+ prompts.append(_text)
154
+ return prompts
155
+
156
+ def __call__(
157
+ self,
158
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
159
+ images: ImageInput = None,
160
+ tokenize_newline_separately: bool = True,
161
+ padding: Union[bool, str, PaddingStrategy] = False,
162
+ truncation: Union[bool, str, TruncationStrategy] = None,
163
+ max_length=None,
164
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
165
+ do_resize: bool = None,
166
+ do_normalize: bool = None,
167
+ image_mean: Optional[Union[float, List[float]]] = None,
168
+ image_std: Optional[Union[float, List[float]]] = None,
169
+ data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
170
+ input_data_format: Optional[
171
+ Union[str, "ChannelDimension"] # noqa: F821
172
+ ] = None,
173
+ resample: "PILImageResampling" = None, # noqa: F821
174
+ do_convert_rgb: bool = None,
175
+ do_thumbnail: bool = None,
176
+ do_align_long_axis: bool = None,
177
+ do_rescale: bool = None,
178
+ ) -> BatchFeature:
179
+ """
180
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
181
+ and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
182
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
183
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
184
+ of the above two methods for more information.
185
+
186
+ Args:
187
+ text (`str`, `List[str]`, `List[List[str]]`):
188
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
189
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
190
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
191
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
192
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
193
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
194
+ number of channels, H and W are image height and width.
195
+ tokenize_newline_separately (`bool`, defaults to `True`):
196
+ Adds a separately tokenized '\n' at the end of the prompt.
197
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
198
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
199
+ index) among:
200
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
201
+ sequence if provided).
202
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
203
+ acceptable input length for the model if that argument is not provided.
204
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
205
+ lengths).
206
+ max_length (`int`, *optional*):
207
+ Maximum length of the returned list and optionally padding length (see above).
208
+ truncation (`bool`, *optional*):
209
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
210
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
211
+ If set, will return tensors of a particular framework. Acceptable values are:
212
+
213
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
214
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
215
+ - `'np'`: Return NumPy `np.ndarray` objects.
216
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
217
+
218
+ Returns:
219
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
220
+
221
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
222
+ is provided, the `input_ids` will also contain the suffix input ids.
223
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
224
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
225
+ `None`).
226
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
227
+ - **labels** -- Labels compatible with training if `suffix` is not None
228
+ """
229
+
230
+ return_token_type_ids = False
231
+
232
+ if images is None:
233
+ raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
234
+ if text is None:
235
+ logger.warning_once(
236
+ "You are using Florence-2 without a text prompt."
237
+ )
238
+ text = ""
239
+
240
+ if isinstance(text, List) and isinstance(images, List):
241
+ if len(images) < len(text):
242
+ raise ValueError(
243
+ f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
244
+ )
245
+ if _is_str_or_image(text):
246
+ text = [text]
247
+ elif isinstance(text, list) and _is_str_or_image(text[0]):
248
+ pass
249
+
250
+ pixel_values = self.image_processor(
251
+ images,
252
+ do_resize=do_resize,
253
+ do_normalize=do_normalize,
254
+ return_tensors=return_tensors,
255
+ image_mean=image_mean,
256
+ image_std=image_std,
257
+ input_data_format=input_data_format,
258
+ data_format=data_format,
259
+ resample=resample,
260
+ do_convert_rgb=do_convert_rgb,
261
+ )["pixel_values"]
262
+
263
+ if max_length is not None:
264
+ max_length -= self.image_seq_length # max_length has to account for the image tokens
265
+
266
+ text = self._construct_prompts(text)
267
+
268
+ inputs = self.tokenizer(
269
+ text,
270
+ return_tensors=return_tensors,
271
+ padding=padding,
272
+ max_length=max_length,
273
+ truncation=truncation,
274
+ return_token_type_ids=return_token_type_ids,
275
+ )
276
+
277
+ return_data = {**inputs, "pixel_values": pixel_values}
278
+
279
+ if return_token_type_ids:
280
+ labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
281
+ return_data.update({"labels": labels})
282
+ return BatchFeature(data=return_data)
283
+
284
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
285
+ def batch_decode(self, *args, **kwargs):
286
+ """
287
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
288
+ refer to the docstring of this method for more information.
289
+ """
290
+ return self.tokenizer.batch_decode(*args, **kwargs)
291
+
292
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
293
+ def decode(self, *args, **kwargs):
294
+ """
295
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
296
+ the docstring of this method for more information.
297
+ """
298
+ return self.tokenizer.decode(*args, **kwargs)
299
+
300
+ @property
301
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
302
+ def model_input_names(self):
303
+ tokenizer_input_names = self.tokenizer.model_input_names
304
+ image_processor_input_names = self.image_processor.model_input_names
305
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
306
+
307
+ def post_process_generation(self, text, task, image_size):
308
+ """
309
+ Post-process the output of the model to each of the task outputs.
310
+
311
+ Args:
312
+ text (`str`): The text to post-process.
313
+ task (`str`): The task to post-process the text for.
314
+ image_size (`Tuple[int, int]`): The size of the image. height x width.
315
+ """
316
+
317
+ task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
318
+ task_answer = self.post_processor(
319
+ text=text,
320
+ image_size=image_size,
321
+ parse_tasks=task_answer_post_processing_type,
322
+ )[task_answer_post_processing_type]
323
+
324
+ if task_answer_post_processing_type == 'pure_text':
325
+ final_answer = task_answer
326
+ # remove the special tokens
327
+ final_answer = final_answer.replace('<s>', '').replace('</s>', '')
328
+ elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
329
+ od_instances = task_answer
330
+ bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
331
+ labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
332
+ final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
333
+ elif task_answer_post_processing_type in ['ocr']:
334
+ bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
335
+ labels = [str(_od_instance['text']) for _od_instance in task_answer]
336
+ final_answer = {'quad_boxes': bboxes, 'labels': labels}
337
+ elif task_answer_post_processing_type in ['phrase_grounding']:
338
+ bboxes = []
339
+ labels = []
340
+ for _grounded_phrase in task_answer:
341
+ for _bbox in _grounded_phrase['bbox']:
342
+ bboxes.append(_bbox)
343
+ labels.append(_grounded_phrase['cat_name'])
344
+ final_answer = {'bboxes': bboxes, 'labels': labels}
345
+ elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
346
+ labels = []
347
+ polygons = []
348
+ for result in task_answer:
349
+ label = result['cat_name']
350
+ _polygons = result['polygons']
351
+ labels.append(label)
352
+ polygons.append(_polygons)
353
+ final_answer = {'polygons': polygons, 'labels': labels}
354
+ elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
355
+ bboxes = []
356
+ bboxes_labels = []
357
+ polygons = []
358
+ polygons_labels = []
359
+ for result in task_answer:
360
+ label = result['cat_name']
361
+ if 'polygons' in result:
362
+ _polygons = result['polygons']
363
+ polygons.append(_polygons)
364
+ polygons_labels.append(label)
365
+ else:
366
+ _bbox = result['bbox']
367
+ bboxes.append(_bbox)
368
+ bboxes_labels.append(label)
369
+ final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
370
+ else:
371
+ raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
372
+
373
+ final_answer = {
374
+ task: final_answer}
375
+ return final_answer
376
+
377
+ class BoxQuantizer(object):
378
+ def __init__(self, mode, bins):
379
+ self.mode = mode
380
+ self.bins = bins
381
+
382
+ def quantize(self, boxes: torch.Tensor, size):
383
+ bins_w, bins_h = self.bins # Quantization bins.
384
+ size_w, size_h = size # Original image size.
385
+ size_per_bin_w = size_w / bins_w
386
+ size_per_bin_h = size_h / bins_h
387
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
388
+
389
+ if self.mode == 'floor':
390
+ quantized_xmin = (
391
+ xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
392
+ quantized_ymin = (
393
+ ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
394
+ quantized_xmax = (
395
+ xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
396
+ quantized_ymax = (
397
+ ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
398
+
399
+ elif self.mode == 'round':
400
+ raise NotImplementedError()
401
+
402
+ else:
403
+ raise ValueError('Incorrect quantization type.')
404
+
405
+ quantized_boxes = torch.cat(
406
+ (quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
407
+ ).int()
408
+
409
+ return quantized_boxes
410
+
411
+ def dequantize(self, boxes: torch.Tensor, size):
412
+ bins_w, bins_h = self.bins # Quantization bins.
413
+ size_w, size_h = size # Original image size.
414
+ size_per_bin_w = size_w / bins_w
415
+ size_per_bin_h = size_h / bins_h
416
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
417
+
418
+ if self.mode == 'floor':
419
+ # Add 0.5 to use the center position of the bin as the coordinate.
420
+ dequantized_xmin = (xmin + 0.5) * size_per_bin_w
421
+ dequantized_ymin = (ymin + 0.5) * size_per_bin_h
422
+ dequantized_xmax = (xmax + 0.5) * size_per_bin_w
423
+ dequantized_ymax = (ymax + 0.5) * size_per_bin_h
424
+
425
+ elif self.mode == 'round':
426
+ raise NotImplementedError()
427
+
428
+ else:
429
+ raise ValueError('Incorrect quantization type.')
430
+
431
+ dequantized_boxes = torch.cat(
432
+ (dequantized_xmin, dequantized_ymin,
433
+ dequantized_xmax, dequantized_ymax), dim=-1
434
+ )
435
+
436
+ return dequantized_boxes
437
+
438
+
439
+ class CoordinatesQuantizer(object):
440
+ """
441
+ Quantize coornidates (Nx2)
442
+ """
443
+
444
+ def __init__(self, mode, bins):
445
+ self.mode = mode
446
+ self.bins = bins
447
+
448
+ def quantize(self, coordinates: torch.Tensor, size):
449
+ bins_w, bins_h = self.bins # Quantization bins.
450
+ size_w, size_h = size # Original image size.
451
+ size_per_bin_w = size_w / bins_w
452
+ size_per_bin_h = size_h / bins_h
453
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
454
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
455
+
456
+ if self.mode == 'floor':
457
+ quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
458
+ quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
459
+
460
+ elif self.mode == 'round':
461
+ raise NotImplementedError()
462
+
463
+ else:
464
+ raise ValueError('Incorrect quantization type.')
465
+
466
+ quantized_coordinates = torch.cat(
467
+ (quantized_x, quantized_y), dim=-1
468
+ ).int()
469
+
470
+ return quantized_coordinates
471
+
472
+ def dequantize(self, coordinates: torch.Tensor, size):
473
+ bins_w, bins_h = self.bins # Quantization bins.
474
+ size_w, size_h = size # Original image size.
475
+ size_per_bin_w = size_w / bins_w
476
+ size_per_bin_h = size_h / bins_h
477
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
478
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
479
+
480
+ if self.mode == 'floor':
481
+ # Add 0.5 to use the center position of the bin as the coordinate.
482
+ dequantized_x = (x + 0.5) * size_per_bin_w
483
+ dequantized_y = (y + 0.5) * size_per_bin_h
484
+
485
+ elif self.mode == 'round':
486
+ raise NotImplementedError()
487
+
488
+ else:
489
+ raise ValueError('Incorrect quantization type.')
490
+
491
+ dequantized_coordinates = torch.cat(
492
+ (dequantized_x, dequantized_y), dim=-1
493
+ )
494
+
495
+ return dequantized_coordinates
496
+
497
+
498
+ class Florence2PostProcesser(object):
499
+ """
500
+ Florence-2 post process for converting text prediction to various tasks results.
501
+
502
+ Args:
503
+ config: A dict of configs.
504
+ tokenizer: A tokenizer for decoding text to spans.
505
+ sample config:
506
+ UNIFIED_POST_PROCESS:
507
+ # commom configs
508
+ NUM_BBOX_HEIGHT_BINS: 1000
509
+ NUM_BBOX_WIDTH_BINS: 1000
510
+ COORDINATES_HEIGHT_BINS: 1000
511
+ COORDINATES_WIDTH_BINS: 1000
512
+ # task specific configs, override the common configs
513
+ PRASE_TASKS:
514
+ - TASK_NAME: 'video_dense_caption'
515
+ PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
516
+ SCORE_MODE: 'avg_cat_name_scores'
517
+ NUM_BINS: 100
518
+ - TASK_NAME: 'od'
519
+ PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
520
+ SCORE_MODE: 'avg_cat_name_scores'
521
+
522
+ Returns:
523
+ parsed_dict (dict): A dict of parsed results.
524
+ """
525
+ def __init__(
526
+ self,
527
+ tokenizer=None
528
+ ):
529
+ parse_tasks = []
530
+ parse_task_configs = {}
531
+ config = self._create_default_config()
532
+ for task in config['PARSE_TASKS']:
533
+ parse_tasks.append(task['TASK_NAME'])
534
+ parse_task_configs[task['TASK_NAME']] = task
535
+
536
+ self.config = config
537
+ self.parse_tasks = parse_tasks
538
+ self.parse_tasks_configs = parse_task_configs
539
+
540
+ self.tokenizer = tokenizer
541
+ if self.tokenizer is not None:
542
+ self.all_special_tokens = set(self.tokenizer.all_special_tokens)
543
+
544
+ self.init_quantizers()
545
+ self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
546
+
547
+ def _create_black_list_of_phrase_grounding(self):
548
+ black_list = {}
549
+
550
+ if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
551
+ black_list = set(
552
+ ['it', 'I', 'me', 'mine',
553
+ 'you', 'your', 'yours',
554
+ 'he', 'him', 'his',
555
+ 'she', 'her', 'hers',
556
+ 'they', 'them', 'their', 'theirs',
557
+ 'one', 'oneself',
558
+ 'we', 'us', 'our', 'ours',
559
+ 'you', 'your', 'yours',
560
+ 'they', 'them', 'their', 'theirs',
561
+ 'mine', 'yours', 'his', 'hers', 'its',
562
+ 'ours', 'yours', 'theirs',
563
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
564
+ 'ourselves', 'yourselves', 'themselves',
565
+ 'this', 'that',
566
+ 'these', 'those',
567
+ 'who', 'whom', 'whose', 'which', 'what',
568
+ 'who', 'whom', 'whose', 'which', 'that',
569
+ 'all', 'another', 'any', 'anybody', 'anyone', 'anything',
570
+ 'each', 'everybody', 'everyone', 'everything',
571
+ 'few', 'many', 'nobody', 'none', 'one', 'several',
572
+ 'some', 'somebody', 'someone', 'something',
573
+ 'each other', 'one another',
574
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
575
+ 'ourselves', 'yourselves', 'themselves',
576
+ 'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
577
+ 'other objects', 'lots', 'a set',
578
+ ]
579
+ )
580
+
581
+ return black_list
582
+
583
+ def _create_default_config(self):
584
+ config = {
585
+ 'NUM_BBOX_HEIGHT_BINS': 1000,
586
+ 'NUM_BBOX_WIDTH_BINS': 1000,
587
+ 'BOX_QUANTIZATION_MODE': 'floor',
588
+ 'COORDINATES_HEIGHT_BINS': 1000,
589
+ 'COORDINATES_WIDTH_BINS': 1000,
590
+ 'COORDINATES_QUANTIZATION_MODE': 'floor',
591
+ 'PARSE_TASKS': [
592
+ {
593
+ 'TASK_NAME': 'od',
594
+ 'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
595
+ },
596
+ {
597
+ 'TASK_NAME': 'ocr',
598
+ 'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
599
+ 'AREA_THRESHOLD': 0.00
600
+ },
601
+ {
602
+ 'TASK_NAME': 'phrase_grounding',
603
+ 'FILTER_BY_BLACK_LIST': True
604
+ },
605
+ {
606
+ 'TASK_NAME': 'pure_text',
607
+ },
608
+ {
609
+ 'TASK_NAME': 'description_with_bboxes',
610
+ },
611
+ {
612
+ 'TASK_NAME': 'description_with_polygons',
613
+ },
614
+ {
615
+ 'TASK_NAME': 'polygons',
616
+ },
617
+ {
618
+ 'TASK_NAME': 'bboxes',
619
+ },
620
+ {
621
+ 'TASK_NAME': 'description_with_bboxes_or_polygons',
622
+ }
623
+ ]
624
+ }
625
+
626
+ return config
627
+
628
+ def init_quantizers(self):
629
+ # we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
630
+ num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
631
+ num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
632
+ box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
633
+ self.box_quantizer = BoxQuantizer(
634
+ box_quantization_mode,
635
+ (num_bbox_width_bins, num_bbox_height_bins),
636
+ )
637
+
638
+ num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
639
+ num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
640
+ box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
641
+ self.coordinates_quantizer = CoordinatesQuantizer(
642
+ box_quantization_mode,
643
+ (num_bbox_width_bins, num_bbox_height_bins),
644
+ )
645
+
646
+ def decode_with_spans(self, tokenizer, token_ids):
647
+ filtered_tokens = tokenizer.convert_ids_to_tokens(
648
+ token_ids, skip_special_tokens=False)
649
+ assert len(filtered_tokens) == len(token_ids)
650
+
651
+ # To avoid mixing byte-level and unicode for byte-level BPT
652
+ # we need to build string separately for added tokens and byte-level tokens
653
+ # cf. https://github.com/huggingface/transformers/issues/1133
654
+ sub_texts = []
655
+ for token in filtered_tokens:
656
+ if token in self.all_special_tokens:
657
+ sub_texts.append(token)
658
+ else:
659
+ if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
660
+ sub_text = tokenizer.convert_tokens_to_string([token])
661
+ elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
662
+ # Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
663
+ # Note: Do not strip sub_text as it may have functional whitespace
664
+ sub_text = token.replace('▁', ' ')
665
+ else:
666
+ raise ValueError(f'type {type(tokenizer)} not supported')
667
+ sub_texts.append(sub_text)
668
+
669
+ text = ''
670
+ spans = []
671
+ for sub_text in sub_texts:
672
+ span = (len(text), len(text) + len(sub_text)) # [start index, end index).
673
+ text += sub_text
674
+ spans.append(span)
675
+
676
+ # Text format:
677
+ # 1. T5Tokenizer/T5TokenizerFast:
678
+ # "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
679
+ # Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
680
+ # 2. BartTokenizer (need to double check):
681
+ # "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
682
+ # Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
683
+ return text, spans
684
+
685
+ def parse_od_from_text_and_spans(
686
+ self,
687
+ text,
688
+ pattern,
689
+ image_size,
690
+ phrase_centric=False
691
+ ):
692
+ parsed = list(re.finditer(pattern, text))
693
+
694
+ instances = []
695
+ for i in range(len(parsed)):
696
+ # Prepare instance.
697
+ instance = {}
698
+
699
+ if phrase_centric:
700
+ bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
701
+ else:
702
+ bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
703
+ instance['bbox'] = self.box_quantizer.dequantize(
704
+ boxes=torch.tensor(bbox_bins),
705
+ size=image_size
706
+ ).tolist()
707
+
708
+ if phrase_centric:
709
+ instance['cat_name'] = parsed[i].group(1).lower().strip()
710
+ else:
711
+ instance['cat_name'] = parsed[i].group(5).lower().strip()
712
+ instances.append(instance)
713
+
714
+ return instances
715
+
716
+ def parse_ocr_from_text_and_spans(self,
717
+ text,
718
+ pattern,
719
+ image_size,
720
+ area_threshold=-1.0,
721
+ ):
722
+ bboxes = []
723
+ labels = []
724
+ text = text.replace('<s>', '')
725
+ # ocr with regions
726
+ parsed = re.findall(pattern, text)
727
+ instances = []
728
+ image_width, image_height = image_size
729
+
730
+ for ocr_line in parsed:
731
+ ocr_content = ocr_line[0]
732
+ quad_box = ocr_line[1:]
733
+ quad_box = [int(i) for i in quad_box]
734
+ quad_box = self.coordinates_quantizer.dequantize(
735
+ torch.tensor(np.array(quad_box).reshape(-1, 2)),
736
+ size=image_size
737
+ ).reshape(-1).tolist()
738
+
739
+ if area_threshold > 0:
740
+ x_coords = [i for i in quad_box[0::2]]
741
+ y_coords = [i for i in quad_box[1::2]]
742
+
743
+ # apply the Shoelace formula
744
+ area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
745
+
746
+ if area < (image_width * image_height) * area_threshold:
747
+ continue
748
+
749
+ bboxes.append(quad_box)
750
+ labels.append(ocr_content)
751
+ instances.append({
752
+ 'quad_box': quad_box,
753
+ 'text': ocr_content,
754
+ })
755
+ return instances
756
+
757
+ def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
758
+ # ignore <s> </s> and <pad>
759
+ cur_span = 0
760
+ if text.startswith('<s>'):
761
+ cur_span += 3
762
+
763
+ text = text.replace('<s>', '')
764
+ text = text.replace('</s>', '')
765
+ text = text.replace('<pad>', '')
766
+
767
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
768
+ phrases = re.findall(pattern, text)
769
+
770
+ # pattern should be text pattern and od pattern
771
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
772
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
773
+
774
+ instances = []
775
+ for pharse_text in phrases:
776
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
777
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
778
+
779
+ if phrase_text_strip == '':
780
+ cur_span += len(pharse_text)
781
+ continue
782
+
783
+ # Prepare instance.
784
+ instance = {}
785
+
786
+ # parse phrase, get string
787
+ phrase = re.search(pattern, phrase_text_strip)
788
+ if phrase is None:
789
+ cur_span += len(pharse_text)
790
+ continue
791
+
792
+ # parse bboxes by box_pattern
793
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
794
+ if len(bboxes_parsed) == 0:
795
+ cur_span += len(pharse_text)
796
+ continue
797
+
798
+ phrase = phrase.group()
799
+ # remove leading and trailing spaces
800
+ phrase = phrase.strip()
801
+
802
+ if phrase in self.black_list_of_phrase_grounding:
803
+ cur_span += len(pharse_text)
804
+ continue
805
+
806
+ # a list of list
807
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
808
+ instance['bbox'] = self.box_quantizer.dequantize(
809
+ boxes=torch.tensor(bbox_bins),
810
+ size=image_size
811
+ ).tolist()
812
+
813
+ # exclude non-ascii characters
814
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
815
+ instance['cat_name'] = phrase
816
+
817
+ instances.append(instance)
818
+
819
+ return instances
820
+
821
+ def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
822
+ # temporary parse solution, split by '.'
823
+ # ignore <s> </s> and <pad>
824
+
825
+ text = text.replace('<s>', '')
826
+ text = text.replace('</s>', '')
827
+ text = text.replace('<pad>', '')
828
+
829
+ if allow_empty_phrase:
830
+ pattern = rf"(?:(?:<loc_\d+>){{4,}})"
831
+ else:
832
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
833
+ phrases = re.findall(pattern, text)
834
+
835
+ # pattern should be text pattern and od pattern
836
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
837
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
838
+
839
+ instances = []
840
+ for pharse_text in phrases:
841
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
842
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
843
+
844
+ if phrase_text_strip == '' and not allow_empty_phrase:
845
+ continue
846
+
847
+ # parse phrase, get string
848
+ phrase = re.search(pattern, phrase_text_strip)
849
+ if phrase is None:
850
+ continue
851
+
852
+ phrase = phrase.group()
853
+ # remove leading and trailing spaces
854
+ phrase = phrase.strip()
855
+
856
+ # parse bboxes by box_pattern
857
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
858
+ if len(bboxes_parsed) == 0:
859
+ continue
860
+
861
+ # a list of list
862
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
863
+
864
+ bboxes = self.box_quantizer.dequantize(
865
+ boxes=torch.tensor(bbox_bins),
866
+ size=image_size
867
+ ).tolist()
868
+
869
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
870
+ for _bboxes in bboxes:
871
+ # Prepare instance.
872
+ instance = {}
873
+ instance['bbox'] = _bboxes
874
+ # exclude non-ascii characters
875
+ instance['cat_name'] = phrase
876
+ instances.append(instance)
877
+
878
+ return instances
879
+
880
+ def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
881
+ allow_empty_phrase=False,
882
+ polygon_sep_token='<sep>',
883
+ polygon_start_token='<poly>',
884
+ polygon_end_token='</poly>',
885
+ with_box_at_start=False,
886
+ ):
887
+
888
+ # ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
889
+ # ignore <s> </s> and <pad>
890
+
891
+ text = text.replace('<s>', '')
892
+ text = text.replace('</s>', '')
893
+ text = text.replace('<pad>', '')
894
+
895
+ if allow_empty_phrase:
896
+ pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
897
+ else:
898
+ # [^<]+: This part matches one or more characters that are not the < symbol.
899
+ # The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
900
+ #
901
+ pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
902
+ phrases = re.findall(pattern, text)
903
+
904
+ phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
905
+ box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
906
+
907
+ # one polygons instance is separated by polygon_start_token and polygon_end_token
908
+ polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
909
+
910
+ instances = []
911
+ for phrase_text in phrases:
912
+
913
+ # exclude loc_\d+>
914
+ # need to get span if want to include category score
915
+ phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
916
+
917
+ # phrase = phrase.replace('<poly>', '')
918
+ # phrase = phrase.replace('poly>', '')
919
+
920
+ if phrase_text_strip == '' and not allow_empty_phrase:
921
+ continue
922
+
923
+
924
+ # parse phrase, get string
925
+ phrase = re.search(phrase_string_pattern, phrase_text_strip)
926
+ if phrase is None:
927
+ continue
928
+ phrase = phrase.group()
929
+ # remove leading and trailing spaces
930
+ phrase = phrase.strip()
931
+
932
+ # parse bboxes by box_pattern
933
+
934
+ # split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
935
+ if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
936
+ polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
937
+ else:
938
+ polygons_instances_parsed = [phrase_text]
939
+
940
+ for _polygons_instances_parsed in polygons_instances_parsed:
941
+ # Prepare instance.
942
+ instance = {}
943
+
944
+ # polygons_parsed= list(re.finditer(box_pattern, phrase_text))
945
+ if isinstance(_polygons_instances_parsed, str):
946
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
947
+ else:
948
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
949
+ if len(polygons_parsed) == 0:
950
+ continue
951
+
952
+ # a list of list (polygon)
953
+ bbox = []
954
+ polygons = []
955
+ for _polygon_parsed in polygons_parsed:
956
+ # group 1: whole <loc_\d+>...</loc_\d+>
957
+ _polygon = _polygon_parsed.group(1)
958
+ # parse into list of int
959
+ _polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
960
+ if with_box_at_start and len(bbox) == 0:
961
+ if len(_polygon) > 4:
962
+ # no valid bbox prediction
963
+ bbox = _polygon[:4]
964
+ _polygon = _polygon[4:]
965
+ else:
966
+ bbox = [0, 0, 0, 0]
967
+ # abandon last element if is not paired
968
+ if len(_polygon) % 2 == 1:
969
+ _polygon = _polygon[:-1]
970
+
971
+ # reshape into (n, 2)
972
+ _polygon = self.coordinates_quantizer.dequantize(
973
+ torch.tensor(np.array(_polygon).reshape(-1, 2)),
974
+ size=image_size
975
+ ).reshape(-1).tolist()
976
+ # reshape back
977
+ polygons.append(_polygon)
978
+
979
+ instance['cat_name'] = phrase
980
+ instance['polygons'] = polygons
981
+ if len(bbox) != 0:
982
+ instance['bbox'] = self.box_quantizer.dequantize(
983
+ boxes=torch.tensor([bbox]),
984
+ size=image_size
985
+ ).tolist()[0]
986
+
987
+ instances.append(instance)
988
+
989
+ return instances
990
+
991
+ def __call__(
992
+ self,
993
+ text=None,
994
+ image_size=None,
995
+ parse_tasks=None,
996
+ ):
997
+ """
998
+ Args:
999
+ text: model outputs
1000
+ image_size: (width, height)
1001
+ parse_tasks: a list of tasks to parse, if None, parse all tasks.
1002
+
1003
+ """
1004
+ if parse_tasks is not None:
1005
+ if isinstance(parse_tasks, str):
1006
+ parse_tasks = [parse_tasks]
1007
+ for _parse_task in parse_tasks:
1008
+ assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
1009
+
1010
+ # sequence or text should be provided
1011
+ assert text is not None, 'text should be provided'
1012
+
1013
+ parsed_dict = {
1014
+ 'text': text
1015
+ }
1016
+
1017
+ for task in self.parse_tasks:
1018
+ if parse_tasks is not None and task not in parse_tasks:
1019
+ continue
1020
+
1021
+ pattern = self.parse_tasks_configs[task].get('PATTERN', None)
1022
+
1023
+ if task == 'ocr':
1024
+ instances = self.parse_ocr_from_text_and_spans(
1025
+ text,
1026
+ pattern=pattern,
1027
+ image_size=image_size,
1028
+ area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
1029
+ )
1030
+ parsed_dict['ocr'] = instances
1031
+ elif task == 'phrase_grounding':
1032
+ instances = self.parse_phrase_grounding_from_text_and_spans(
1033
+ text,
1034
+ pattern=pattern,
1035
+ image_size=image_size,
1036
+ )
1037
+ parsed_dict['phrase_grounding'] = instances
1038
+ elif task == 'pure_text':
1039
+ parsed_dict['pure_text'] = text
1040
+ elif task == 'description_with_bboxes':
1041
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1042
+ text,
1043
+ pattern=pattern,
1044
+ image_size=image_size,
1045
+ )
1046
+ parsed_dict['description_with_bboxes'] = instances
1047
+ elif task == 'description_with_polygons':
1048
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1049
+ text,
1050
+ pattern=pattern,
1051
+ image_size=image_size,
1052
+ )
1053
+ parsed_dict['description_with_polygons'] = instances
1054
+ elif task == 'polygons':
1055
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1056
+ text,
1057
+ pattern=pattern,
1058
+ image_size=image_size,
1059
+ allow_empty_phrase=True,
1060
+ )
1061
+ parsed_dict['polygons'] = instances
1062
+ elif task == 'bboxes':
1063
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1064
+ text,
1065
+ pattern=pattern,
1066
+ image_size=image_size,
1067
+ allow_empty_phrase=True,
1068
+ )
1069
+ parsed_dict['bboxes'] = instances
1070
+ elif task == 'description_with_bboxes_or_polygons':
1071
+ if '<poly>' in text:
1072
+ # only support either polygons or bboxes, not both at the same time
1073
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1074
+ text,
1075
+ pattern=pattern,
1076
+ image_size=image_size,
1077
+ )
1078
+ else:
1079
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1080
+ text,
1081
+ pattern=pattern,
1082
+ image_size=image_size,
1083
+ )
1084
+ parsed_dict['description_with_bboxes_or_polygons'] = instances
1085
+ else:
1086
+ raise ValueError("task {} is not supported".format(task))
1087
+
1088
+ return parsed_dict
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_florence2.Florence2Processor"
4
+ },
5
+ "processor_class": "Florence2Processor"
6
+ }
special_tokens_map.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff