marleyshan21 commited on
Commit
ad491c8
1 Parent(s): 1f920de

Tried 2nd time PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 285.97 +/- 19.96
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d31f32a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d31f32ae8>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d31f32b70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d31f32bf8>", "_build": "<function ActorCriticPolicy._build at 0x7f7d31f32c80>", "forward": "<function ActorCriticPolicy.forward at 0x7f7d31f32d08>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d31f32d90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7d31f32e18>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d31f32ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d31f32f28>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d31f35048>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7f7d31f27a58>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7f7d31f27a90>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7f7d31f27ac8>", "_abc_negative_cache_version": 58}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSwiFlIwBQ5R0lFKUjARoaWdolGgTKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMDWJvdW5kZWRfYWJvdmWUaBMolggAAAAAAAAAAAAAAAAAAACUaCJLCIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVhwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2523136, "_total_timesteps": 2500000, "seed": null, "action_noise": null, "start_time": 1651783434.679868, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABe0T3zBYU+Kj3Zvf+63r42i4s9+CnLvQAAAAAAAAAAZgjVvINAIz8KCt08rDonv5UNar3ZNw09AAAAAAAAAABqZm++bQcfP6qvcz0OVR+/ORzBvtHFBj4AAAAAAAAAADOFtjwULIG6NmFbu0WihDDqps46UBqcswAAgD8AAIA/TRewPaOHfj2Tbue+TojKvv5hvL1uWUK+AAAAAAAAAAAAxgS8jxZguqk+RTiVSJszlMn5ObLoZ7cAAIA/AACAPwDIPT0KLg27UrefPP68Ez1NlOc56iiIugAAgD8AAIA/5gdFPR8B0rvj/Hy73JubO96ANr2z7JM8AACAPwAAgD+NLYU9a3ecP7l4iD7Vpyi/RhujPUDC9T0AAAAAAAAAAM1zej0xwys+/hmnvZcLs77/nqI7nWacvAAAAAAAAAAA5nYOPY+ePrrWq8Y7U5GMPAtlRrvww3Q9AACAPwAAgD86sj4+Mau+PjbBa74a8gi/k5HZPaqBH74AAAAAAAAAAK36cb5Vzng/jsfgvfNRG7+Se86+qUGMPAAAAAAAAAAAagBivsOhfT+u7we+k5Ipv5Y2rL4Y3/c8AAAAAAAAAAAa4KG9HZk6P5Lj8ru1tSi/Wr8svnFCGD0AAAAAAAAAAIhWmb4mDiI/JVp5PkrM/L48r7i+wdSCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJZS+ELJ/c0CUhpRSlIwBbJRL24wBdJRHQKgaimjTKDF1fZQoaAZoCWgPQwglICbhAtBxQJSGlFKUaBVL2WgWR0CoGp1KPGQ0dX2UKGgGaAloD0MI8+fbgqUNcUCUhpRSlGgVS6loFkdAqBqbEpAlfXV9lChoBmgJaA9DCP+R6dBpX3NAlIaUUpRoFUvAaBZHQKgamHs1KoR1fZQoaAZoCWgPQwjZmULntb5zQJSGlFKUaBVLymgWR0CoG2IGIKtxdX2UKGgGaAloD0MI/bypSAWPckCUhpRSlGgVS8doFkdAqBuMdmxt53V9lChoBmgJaA9DCHC1TlyOSnNAlIaUUpRoFUvbaBZHQKgbt5C4SYh1fZQoaAZoCWgPQwiXqUnwRoFzQJSGlFKUaBVNkgFoFkdAqBvDDbah6HV9lChoBmgJaA9DCJnVO9wOKnJAlIaUUpRoFUvJaBZHQKgbvjfek591fZQoaAZoCWgPQwg5ud+haB1wQJSGlFKUaBVLu2gWR0CoG8hvrGBGdX2UKGgGaAloD0MIYAZjRGL9cUCUhpRSlGgVS+BoFkdAqBvbfvWpZXV9lChoBmgJaA9DCImYEkn09HFAlIaUUpRoFUvAaBZHQKgb5GDL8rJ1fZQoaAZoCWgPQwhLAP4plYNwQJSGlFKUaBVLwmgWR0CoHBj50r9VdX2UKGgGaAloD0MI6PS8G4u7cECUhpRSlGgVS65oFkdAqBwzQRf4RHV9lChoBmgJaA9DCLWjOEcdnW9AlIaUUpRoFUuxaBZHQKgcTDeCTU11fZQoaAZoCWgPQwi29j5VRYtxQJSGlFKUaBVN3wFoFkdAqBxKGL1mJ3V9lChoBmgJaA9DCOLl6VxRtnFAlIaUUpRoFUvCaBZHQKgca3F1jiJ1fZQoaAZoCWgPQwidf7vsFxxzQJSGlFKUaBVNLAFoFkdAqBx103fhuXV9lChoBmgJaA9DCL9H/fVKSXNAlIaUUpRoFUvSaBZHQKgcjhP0qYt1fZQoaAZoCWgPQwj+Q/rt67JQQJSGlFKUaBVLnGgWR0CoHRQxnFo+dX2UKGgGaAloD0MIcoqO5LI2c0CUhpRSlGgVS7NoFkdAqB0d/QSi/XV9lChoBmgJaA9DCMzxCkRP1XNAlIaUUpRoFUvNaBZHQKgdNMh5gPV1fZQoaAZoCWgPQwhoW806I/pzQJSGlFKUaBVLvGgWR0CoHWjrJKaodX2UKGgGaAloD0MISIjyBS0+b0CUhpRSlGgVS8JoFkdAqB1nomoitHV9lChoBmgJaA9DCLe1heflCXJAlIaUUpRoFUuyaBZHQKgdbwhGH591fZQoaAZoCWgPQwhFEOfhRGxyQJSGlFKUaBVLxmgWR0CoHXvuXu3MdX2UKGgGaAloD0MIc/c5PlprckCUhpRSlGgVS7toFkdAqB16qQzUJHV9lChoBmgJaA9DCCmSrwRSEHJAlIaUUpRoFUumaBZHQKgd1CMxXXB1fZQoaAZoCWgPQwjsSzYebNBwQJSGlFKUaBVLvWgWR0CoHeeg+QlsdX2UKGgGaAloD0MIesa+ZCPBcECUhpRSlGgVS6BoFkdAqB3uJxeb/nV9lChoBmgJaA9DCLZmKy+5P3NAlIaUUpRoFUvCaBZHQKgd8K+i8Fp1fZQoaAZoCWgPQwiZf/RN2sBzQJSGlFKUaBVL22gWR0CoHfr5ylvZdX2UKGgGaAloD0MIp11MM932b0CUhpRSlGgVS9NoFkdAqB4AMhHLBHV9lChoBmgJaA9DCDij5qvkzHFAlIaUUpRoFUvPaBZHQKgeM1QZXMh1fZQoaAZoCWgPQwjsaYe/JohxQJSGlFKUaBVLtmgWR0CoHrH2qT8pdX2UKGgGaAloD0MIDqMgeDz1cECUhpRSlGgVS71oFkdAqB65eRgZ0nV9lChoBmgJaA9DCDhKXp3jhXBAlIaUUpRoFUu3aBZHQKgezHTZxrB1fZQoaAZoCWgPQwhzY3rCEptlQJSGlFKUaBVN6ANoFkdAqB7dx4ptrXV9lChoBmgJaA9DCF5kAn6N4HFAlIaUUpRoFUvAaBZHQKgfDjTa0yB1fZQoaAZoCWgPQwggnE8dazNzQJSGlFKUaBVL22gWR0CoH0OTq0MPdX2UKGgGaAloD0MIBd7Jp4fJc0CUhpRSlGgVS+FoFkdAqB9Z3cHnlnV9lChoBmgJaA9DCKgZUkUxKHNAlIaUUpRoFUvhaBZHQKgfZMWXTmZ1fZQoaAZoCWgPQwjkSdI10wFyQJSGlFKUaBVL7WgWR0CoH37N0NjLdX2UKGgGaAloD0MI0hvuI3ftcECUhpRSlGgVS8hoFkdAqB+HnZCfH3V9lChoBmgJaA9DCHHIBtLFcG9AlIaUUpRoFUu6aBZHQKgfjjNpudh1fZQoaAZoCWgPQwgmpguxuu1yQJSGlFKUaBVLvmgWR0CoH4zeO4oadX2UKGgGaAloD0MIPrDjv8D5c0CUhpRSlGgVS7toFkdAqB+UoScslXV9lChoBmgJaA9DCKQYINEER3BAlIaUUpRoFUvNaBZHQKgfoVxjriV1fZQoaAZoCWgPQwjUuaKUUMxxQJSGlFKUaBVL0mgWR0CoH61sDW9UdX2UKGgGaAloD0MIti+gF65GdECUhpRSlGgVS85oFkdAqB/fn+yZ8nV9lChoBmgJaA9DCF70FaQZuG9AlIaUUpRoFUutaBZHQKggKhY/3WZ1fZQoaAZoCWgPQwg4hCo1ewNxQJSGlFKUaBVLymgWR0CoIEY1xbSrdX2UKGgGaAloD0MIzefc7XpxcUCUhpRSlGgVS8doFkdAqCBRLK3d9HV9lChoBmgJaA9DCOKxn8USxnJAlIaUUpRoFUvgaBZHQKggcJKraM91fZQoaAZoCWgPQwi5bkp5bX9xQJSGlFKUaBVLnGgWR0CoILl9KEnLdX2UKGgGaAloD0MIbHpQUIouc0CUhpRSlGgVS91oFkdAqCDC3Td+HHV9lChoBmgJaA9DCGK85lUdb3FAlIaUUpRoFUvNaBZHQKgg12+wkgR1fZQoaAZoCWgPQwgAOsyXl71wQJSGlFKUaBVLx2gWR0CoIOhCtzS1dX2UKGgGaAloD0MI0R+aeXLtb0CUhpRSlGgVS7JoFkdAqCDun/DLsHV9lChoBmgJaA9DCC/h0Fs8xHBAlIaUUpRoFUvRaBZHQKgg8ju8brF1fZQoaAZoCWgPQwjRQCybuVBwQJSGlFKUaBVLxmgWR0CoIQAX2ugZdX2UKGgGaAloD0MIUS6NX3juckCUhpRSlGgVS8ZoFkdAqCEHV9Wp63V9lChoBmgJaA9DCLnH0ocu9nBAlIaUUpRoFUvCaBZHQKghGZflZHN1fZQoaAZoCWgPQwgKZ7eWSS1xQJSGlFKUaBVLuWgWR0CoIRdQfp2VdX2UKGgGaAloD0MIPsqIC0AuckCUhpRSlGgVS9RoFkdAqCEjoEB8yHV9lChoBmgJaA9DCLQdU3flIXFAlIaUUpRoFUvCaBZHQKghWEEkjX51fZQoaAZoCWgPQwhmguFcw0JPQJSGlFKUaBVLk2gWR0CoIWG7BfrsdX2UKGgGaAloD0MIkQpjC8HEcUCUhpRSlGgVS7FoFkdAqCGnYSQHRnV9lChoBmgJaA9DCKJESx7P3XBAlIaUUpRoFUvFaBZHQKghqo2n8891fZQoaAZoCWgPQwheaK7TSNFxQJSGlFKUaBVLsmgWR0CoIgw7T2FndX2UKGgGaAloD0MIqDej5qsxckCUhpRSlGgVS51oFkdAqCIPlEJBxHV9lChoBmgJaA9DCNlaXyR0BXNAlIaUUpRoFUu1aBZHQKgiG4Ia99N1fZQoaAZoCWgPQwgIkncOZTpxQJSGlFKUaBVLsmgWR0CoIipLuhK2dX2UKGgGaAloD0MIRYR/ETRhc0CUhpRSlGgVS+loFkdAqCI1me18cHV9lChoBmgJaA9DCLtIoSw8AXFAlIaUUpRoFUu+aBZHQKgiWIFeOXF1fZQoaAZoCWgPQwhWgzC3+2hxQJSGlFKUaBVLtWgWR0CoInH/DLr5dX2UKGgGaAloD0MIKgMHtPRJb0CUhpRSlGgVS7NoFkdAqCJ98Rcu8XV9lChoBmgJaA9DCOcAwRz9BHFAlIaUUpRoFUvgaBZHQKgio8mKIi11fZQoaAZoCWgPQwi3KR4XVehuQJSGlFKUaBVL0WgWR0CoIrDjJdSmdX2UKGgGaAloD0MIFwyuuSPVc0CUhpRSlGgVS7poFkdAqCLP+n62v3V9lChoBmgJaA9DCGoYPiKm9nFAlIaUUpRoFUvsaBZHQKgi1D63y7R1fZQoaAZoCWgPQwjQJ/IkKfhxQJSGlFKUaBVL1mgWR0CoIxSX+l0pdX2UKGgGaAloD0MIGv1oOKXNcECUhpRSlGgVS7hoFkdAqCMicRUWEnV9lChoBmgJaA9DCLJkjuXdtXFAlIaUUpRoFUvEaBZHQKgjODyOJch1fZQoaAZoCWgPQwjCMGDJ1UpvQJSGlFKUaBVLrWgWR0CoI3DGDL8rdX2UKGgGaAloD0MI3795caLHckCUhpRSlGgVS7FoFkdAqCN8lNUOu3V9lChoBmgJaA9DCItPATAeSXJAlIaUUpRoFUuwaBZHQKgjljI7vG91fZQoaAZoCWgPQwh/FHXmHlZuQJSGlFKUaBVLsGgWR0CoI6QQDmr9dX2UKGgGaAloD0MI0H8PXjvrcUCUhpRSlGgVS8FoFkdAqCOt+1Bt13V9lChoBmgJaA9DCMZNDTTfZXJAlIaUUpRoFUvQaBZHQKgkDMPBi1B1fZQoaAZoCWgPQwjdQ8L3PphxQJSGlFKUaBVLyWgWR0CoJBmL1mJ4dX2UKGgGaAloD0MI3o/bL1/NckCUhpRSlGgVS8toFkdAqCQpubZvk3V9lChoBmgJaA9DCHS0qiVdj3FAlIaUUpRoFU2kAWgWR0CoJExCQcPwdX2UKGgGaAloD0MI2SYVjTWic0CUhpRSlGgVS8hoFkdAqCRS+zt1IXV9lChoBmgJaA9DCFNYqaCiBnNAlIaUUpRoFUvQaBZHQKgkVgDzRQd1fZQoaAZoCWgPQwh3hT5YxpVtQJSGlFKUaBVLwmgWR0CoJGeNDMNddX2UKGgGaAloD0MIv+505wnMc0CUhpRSlGgVS8doFkdAqCRttwaR6nV9lChoBmgJaA9DCKIlj6dliHBAlIaUUpRoFUuiaBZHQKgkcsFt8/l1fZQoaAZoCWgPQwhPdjOj3zNyQJSGlFKUaBVLr2gWR0CoJH2F36hydX2UKGgGaAloD0MInMB0Wrc6cUCUhpRSlGgVS75oFkdAqCS3IXCTEHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 770, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-70-generic-x86_64-with-debian-buster-sid #78~18.04.1-Ubuntu SMP Sat Mar 20 14:10:07 UTC 2021", "Python": "3.6.15", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:754305a301c2ca91bf9f149a712780a20076b9a158dff3f5d639c4c0edf503fc
3
+ size 144281
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.3.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d31f32a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d31f32ae8>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d31f32b70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d31f32bf8>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7d31f32c80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7d31f32d08>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d31f32d90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7d31f32e18>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d31f32ea0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d31f32f28>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d31f35048>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_registry": "<_weakrefset.WeakSet object at 0x7f7d31f27a58>",
20
+ "_abc_cache": "<_weakrefset.WeakSet object at 0x7f7d31f27a90>",
21
+ "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7f7d31f27ac8>",
22
+ "_abc_negative_cache_version": 58
23
+ },
24
+ "verbose": 1,
25
+ "policy_kwargs": {},
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gAWVpAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSwiFlIwBQ5R0lFKUjARoaWdolGgTKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMDWJvdW5kZWRfYWJvdmWUaBMolggAAAAAAAAAAAAAAAAAAACUaCJLCIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
29
+ "dtype": "float32",
30
+ "shape": [
31
+ 8
32
+ ],
33
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
34
+ "high": "[inf inf inf inf inf inf inf inf]",
35
+ "bounded_below": "[False False False False False False False False]",
36
+ "bounded_above": "[False False False False False False False False]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
41
+ ":serialized:": "gAWVhwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
42
+ "n": 4,
43
+ "shape": [],
44
+ "dtype": "int64",
45
+ "_np_random": null
46
+ },
47
+ "n_envs": 16,
48
+ "num_timesteps": 2523136,
49
+ "_total_timesteps": 2500000,
50
+ "seed": null,
51
+ "action_noise": null,
52
+ "start_time": 1651783434.679868,
53
+ "learning_rate": 0.0005,
54
+ "tensorboard_log": null,
55
+ "lr_schedule": {
56
+ ":type:": "<class 'function'>",
57
+ ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
58
+ },
59
+ "_last_obs": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABe0T3zBYU+Kj3Zvf+63r42i4s9+CnLvQAAAAAAAAAAZgjVvINAIz8KCt08rDonv5UNar3ZNw09AAAAAAAAAABqZm++bQcfP6qvcz0OVR+/ORzBvtHFBj4AAAAAAAAAADOFtjwULIG6NmFbu0WihDDqps46UBqcswAAgD8AAIA/TRewPaOHfj2Tbue+TojKvv5hvL1uWUK+AAAAAAAAAAAAxgS8jxZguqk+RTiVSJszlMn5ObLoZ7cAAIA/AACAPwDIPT0KLg27UrefPP68Ez1NlOc56iiIugAAgD8AAIA/5gdFPR8B0rvj/Hy73JubO96ANr2z7JM8AACAPwAAgD+NLYU9a3ecP7l4iD7Vpyi/RhujPUDC9T0AAAAAAAAAAM1zej0xwys+/hmnvZcLs77/nqI7nWacvAAAAAAAAAAA5nYOPY+ePrrWq8Y7U5GMPAtlRrvww3Q9AACAPwAAgD86sj4+Mau+PjbBa74a8gi/k5HZPaqBH74AAAAAAAAAAK36cb5Vzng/jsfgvfNRG7+Se86+qUGMPAAAAAAAAAAAagBivsOhfT+u7we+k5Ipv5Y2rL4Y3/c8AAAAAAAAAAAa4KG9HZk6P5Lj8ru1tSi/Wr8svnFCGD0AAAAAAAAAAIhWmb4mDiI/JVp5PkrM/L48r7i+wdSCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": null,
68
+ "_episode_num": 0,
69
+ "use_sde": false,
70
+ "sde_sample_freq": -1,
71
+ "_current_progress_remaining": -0.009254400000000107,
72
+ "ep_info_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJZS+ELJ/c0CUhpRSlIwBbJRL24wBdJRHQKgaimjTKDF1fZQoaAZoCWgPQwglICbhAtBxQJSGlFKUaBVL2WgWR0CoGp1KPGQ0dX2UKGgGaAloD0MI8+fbgqUNcUCUhpRSlGgVS6loFkdAqBqbEpAlfXV9lChoBmgJaA9DCP+R6dBpX3NAlIaUUpRoFUvAaBZHQKgamHs1KoR1fZQoaAZoCWgPQwjZmULntb5zQJSGlFKUaBVLymgWR0CoG2IGIKtxdX2UKGgGaAloD0MI/bypSAWPckCUhpRSlGgVS8doFkdAqBuMdmxt53V9lChoBmgJaA9DCHC1TlyOSnNAlIaUUpRoFUvbaBZHQKgbt5C4SYh1fZQoaAZoCWgPQwiXqUnwRoFzQJSGlFKUaBVNkgFoFkdAqBvDDbah6HV9lChoBmgJaA9DCJnVO9wOKnJAlIaUUpRoFUvJaBZHQKgbvjfek591fZQoaAZoCWgPQwg5ud+haB1wQJSGlFKUaBVLu2gWR0CoG8hvrGBGdX2UKGgGaAloD0MIYAZjRGL9cUCUhpRSlGgVS+BoFkdAqBvbfvWpZXV9lChoBmgJaA9DCImYEkn09HFAlIaUUpRoFUvAaBZHQKgb5GDL8rJ1fZQoaAZoCWgPQwhLAP4plYNwQJSGlFKUaBVLwmgWR0CoHBj50r9VdX2UKGgGaAloD0MI6PS8G4u7cECUhpRSlGgVS65oFkdAqBwzQRf4RHV9lChoBmgJaA9DCLWjOEcdnW9AlIaUUpRoFUuxaBZHQKgcTDeCTU11fZQoaAZoCWgPQwi29j5VRYtxQJSGlFKUaBVN3wFoFkdAqBxKGL1mJ3V9lChoBmgJaA9DCOLl6VxRtnFAlIaUUpRoFUvCaBZHQKgca3F1jiJ1fZQoaAZoCWgPQwidf7vsFxxzQJSGlFKUaBVNLAFoFkdAqBx103fhuXV9lChoBmgJaA9DCL9H/fVKSXNAlIaUUpRoFUvSaBZHQKgcjhP0qYt1fZQoaAZoCWgPQwj+Q/rt67JQQJSGlFKUaBVLnGgWR0CoHRQxnFo+dX2UKGgGaAloD0MIcoqO5LI2c0CUhpRSlGgVS7NoFkdAqB0d/QSi/XV9lChoBmgJaA9DCMzxCkRP1XNAlIaUUpRoFUvNaBZHQKgdNMh5gPV1fZQoaAZoCWgPQwhoW806I/pzQJSGlFKUaBVLvGgWR0CoHWjrJKaodX2UKGgGaAloD0MISIjyBS0+b0CUhpRSlGgVS8JoFkdAqB1nomoitHV9lChoBmgJaA9DCLe1heflCXJAlIaUUpRoFUuyaBZHQKgdbwhGH591fZQoaAZoCWgPQwhFEOfhRGxyQJSGlFKUaBVLxmgWR0CoHXvuXu3MdX2UKGgGaAloD0MIc/c5PlprckCUhpRSlGgVS7toFkdAqB16qQzUJHV9lChoBmgJaA9DCCmSrwRSEHJAlIaUUpRoFUumaBZHQKgd1CMxXXB1fZQoaAZoCWgPQwjsSzYebNBwQJSGlFKUaBVLvWgWR0CoHeeg+QlsdX2UKGgGaAloD0MIesa+ZCPBcECUhpRSlGgVS6BoFkdAqB3uJxeb/nV9lChoBmgJaA9DCLZmKy+5P3NAlIaUUpRoFUvCaBZHQKgd8K+i8Fp1fZQoaAZoCWgPQwiZf/RN2sBzQJSGlFKUaBVL22gWR0CoHfr5ylvZdX2UKGgGaAloD0MIp11MM932b0CUhpRSlGgVS9NoFkdAqB4AMhHLBHV9lChoBmgJaA9DCDij5qvkzHFAlIaUUpRoFUvPaBZHQKgeM1QZXMh1fZQoaAZoCWgPQwjsaYe/JohxQJSGlFKUaBVLtmgWR0CoHrH2qT8pdX2UKGgGaAloD0MIDqMgeDz1cECUhpRSlGgVS71oFkdAqB65eRgZ0nV9lChoBmgJaA9DCDhKXp3jhXBAlIaUUpRoFUu3aBZHQKgezHTZxrB1fZQoaAZoCWgPQwhzY3rCEptlQJSGlFKUaBVN6ANoFkdAqB7dx4ptrXV9lChoBmgJaA9DCF5kAn6N4HFAlIaUUpRoFUvAaBZHQKgfDjTa0yB1fZQoaAZoCWgPQwggnE8dazNzQJSGlFKUaBVL22gWR0CoH0OTq0MPdX2UKGgGaAloD0MIBd7Jp4fJc0CUhpRSlGgVS+FoFkdAqB9Z3cHnlnV9lChoBmgJaA9DCKgZUkUxKHNAlIaUUpRoFUvhaBZHQKgfZMWXTmZ1fZQoaAZoCWgPQwjkSdI10wFyQJSGlFKUaBVL7WgWR0CoH37N0NjLdX2UKGgGaAloD0MI0hvuI3ftcECUhpRSlGgVS8hoFkdAqB+HnZCfH3V9lChoBmgJaA9DCHHIBtLFcG9AlIaUUpRoFUu6aBZHQKgfjjNpudh1fZQoaAZoCWgPQwgmpguxuu1yQJSGlFKUaBVLvmgWR0CoH4zeO4oadX2UKGgGaAloD0MIPrDjv8D5c0CUhpRSlGgVS7toFkdAqB+UoScslXV9lChoBmgJaA9DCKQYINEER3BAlIaUUpRoFUvNaBZHQKgfoVxjriV1fZQoaAZoCWgPQwjUuaKUUMxxQJSGlFKUaBVL0mgWR0CoH61sDW9UdX2UKGgGaAloD0MIti+gF65GdECUhpRSlGgVS85oFkdAqB/fn+yZ8nV9lChoBmgJaA9DCF70FaQZuG9AlIaUUpRoFUutaBZHQKggKhY/3WZ1fZQoaAZoCWgPQwg4hCo1ewNxQJSGlFKUaBVLymgWR0CoIEY1xbSrdX2UKGgGaAloD0MIzefc7XpxcUCUhpRSlGgVS8doFkdAqCBRLK3d9HV9lChoBmgJaA9DCOKxn8USxnJAlIaUUpRoFUvgaBZHQKggcJKraM91fZQoaAZoCWgPQwi5bkp5bX9xQJSGlFKUaBVLnGgWR0CoILl9KEnLdX2UKGgGaAloD0MIbHpQUIouc0CUhpRSlGgVS91oFkdAqCDC3Td+HHV9lChoBmgJaA9DCGK85lUdb3FAlIaUUpRoFUvNaBZHQKgg12+wkgR1fZQoaAZoCWgPQwgAOsyXl71wQJSGlFKUaBVLx2gWR0CoIOhCtzS1dX2UKGgGaAloD0MI0R+aeXLtb0CUhpRSlGgVS7JoFkdAqCDun/DLsHV9lChoBmgJaA9DCC/h0Fs8xHBAlIaUUpRoFUvRaBZHQKgg8ju8brF1fZQoaAZoCWgPQwjRQCybuVBwQJSGlFKUaBVLxmgWR0CoIQAX2ugZdX2UKGgGaAloD0MIUS6NX3juckCUhpRSlGgVS8ZoFkdAqCEHV9Wp63V9lChoBmgJaA9DCLnH0ocu9nBAlIaUUpRoFUvCaBZHQKghGZflZHN1fZQoaAZoCWgPQwgKZ7eWSS1xQJSGlFKUaBVLuWgWR0CoIRdQfp2VdX2UKGgGaAloD0MIPsqIC0AuckCUhpRSlGgVS9RoFkdAqCEjoEB8yHV9lChoBmgJaA9DCLQdU3flIXFAlIaUUpRoFUvCaBZHQKghWEEkjX51fZQoaAZoCWgPQwhmguFcw0JPQJSGlFKUaBVLk2gWR0CoIWG7BfrsdX2UKGgGaAloD0MIkQpjC8HEcUCUhpRSlGgVS7FoFkdAqCGnYSQHRnV9lChoBmgJaA9DCKJESx7P3XBAlIaUUpRoFUvFaBZHQKghqo2n8891fZQoaAZoCWgPQwheaK7TSNFxQJSGlFKUaBVLsmgWR0CoIgw7T2FndX2UKGgGaAloD0MIqDej5qsxckCUhpRSlGgVS51oFkdAqCIPlEJBxHV9lChoBmgJaA9DCNlaXyR0BXNAlIaUUpRoFUu1aBZHQKgiG4Ia99N1fZQoaAZoCWgPQwgIkncOZTpxQJSGlFKUaBVLsmgWR0CoIipLuhK2dX2UKGgGaAloD0MIRYR/ETRhc0CUhpRSlGgVS+loFkdAqCI1me18cHV9lChoBmgJaA9DCLtIoSw8AXFAlIaUUpRoFUu+aBZHQKgiWIFeOXF1fZQoaAZoCWgPQwhWgzC3+2hxQJSGlFKUaBVLtWgWR0CoInH/DLr5dX2UKGgGaAloD0MIKgMHtPRJb0CUhpRSlGgVS7NoFkdAqCJ98Rcu8XV9lChoBmgJaA9DCOcAwRz9BHFAlIaUUpRoFUvgaBZHQKgio8mKIi11fZQoaAZoCWgPQwi3KR4XVehuQJSGlFKUaBVL0WgWR0CoIrDjJdSmdX2UKGgGaAloD0MIFwyuuSPVc0CUhpRSlGgVS7poFkdAqCLP+n62v3V9lChoBmgJaA9DCGoYPiKm9nFAlIaUUpRoFUvsaBZHQKgi1D63y7R1fZQoaAZoCWgPQwjQJ/IkKfhxQJSGlFKUaBVL1mgWR0CoIxSX+l0pdX2UKGgGaAloD0MIGv1oOKXNcECUhpRSlGgVS7hoFkdAqCMicRUWEnV9lChoBmgJaA9DCLJkjuXdtXFAlIaUUpRoFUvEaBZHQKgjODyOJch1fZQoaAZoCWgPQwjCMGDJ1UpvQJSGlFKUaBVLrWgWR0CoI3DGDL8rdX2UKGgGaAloD0MI3795caLHckCUhpRSlGgVS7FoFkdAqCN8lNUOu3V9lChoBmgJaA9DCItPATAeSXJAlIaUUpRoFUuwaBZHQKgjljI7vG91fZQoaAZoCWgPQwh/FHXmHlZuQJSGlFKUaBVLsGgWR0CoI6QQDmr9dX2UKGgGaAloD0MI0H8PXjvrcUCUhpRSlGgVS8FoFkdAqCOt+1Bt13V9lChoBmgJaA9DCMZNDTTfZXJAlIaUUpRoFUvQaBZHQKgkDMPBi1B1fZQoaAZoCWgPQwjdQ8L3PphxQJSGlFKUaBVLyWgWR0CoJBmL1mJ4dX2UKGgGaAloD0MI3o/bL1/NckCUhpRSlGgVS8toFkdAqCQpubZvk3V9lChoBmgJaA9DCHS0qiVdj3FAlIaUUpRoFU2kAWgWR0CoJExCQcPwdX2UKGgGaAloD0MI2SYVjTWic0CUhpRSlGgVS8hoFkdAqCRS+zt1IXV9lChoBmgJaA9DCFNYqaCiBnNAlIaUUpRoFUvQaBZHQKgkVgDzRQd1fZQoaAZoCWgPQwh3hT5YxpVtQJSGlFKUaBVLwmgWR0CoJGeNDMNddX2UKGgGaAloD0MIv+505wnMc0CUhpRSlGgVS8doFkdAqCRttwaR6nV9lChoBmgJaA9DCKIlj6dliHBAlIaUUpRoFUuiaBZHQKgkcsFt8/l1fZQoaAZoCWgPQwhPdjOj3zNyQJSGlFKUaBVLr2gWR0CoJH2F36hydX2UKGgGaAloD0MInMB0Wrc6cUCUhpRSlGgVS75oFkdAqCS3IXCTEHVlLg=="
75
+ },
76
+ "ep_success_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
79
+ },
80
+ "_n_updates": 770,
81
+ "n_steps": 2048,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 10,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
92
+ },
93
+ "clip_range_vf": null,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78d45ad93a39e7570e57a4bf79fb624aa7c3b99361bf0a254f4e42ae5b6d23d5
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73dceac18a398dd695e6fb1e4327f510763d6affbe5e1908876d771c12e564e9
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-70-generic-x86_64-with-debian-buster-sid #78~18.04.1-Ubuntu SMP Sat Mar 20 14:10:07 UTC 2021
2
+ Python: 3.6.15
3
+ Stable-Baselines3: 1.3.0
4
+ PyTorch: 1.10.2+cu102
5
+ GPU Enabled: True
6
+ Numpy: 1.19.5
7
+ Gym: 0.19.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:497f18024bebaa05be82889e8fe29eece83e65beaa8e3f01b4b0b4cf606ccde7
3
+ size 274206
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.97418255756725, "std_reward": 19.963191512031962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T03:10:22.244294"}