rodrigo-nogueira
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -23,9 +23,59 @@ Sabiá-7B is Portuguese language model developed by [Maritaca AI](https://www.ma
|
|
23 |
|
24 |
**Paper:** For more details, please refer to our paper: [Sabiá: Portuguese Large Language Models](https://arxiv.org/pdf/2304.07880.pdf)
|
25 |
|
26 |
-
Given that Sabiá-7B was trained solely on a language modeling objective without fine-tuning for instruction following, it is recommended for few-shot tasks rather than zero-shot tasks.
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
Below we show the results on the Poeta benchmark, which consists of 14 Portuguese datasets.
|
31 |
|
@@ -37,7 +87,7 @@ For more information on the Normalized Preferred Metric (NPM), please refer to o
|
|
37 |
|LLaMA-2-7B| 43.7|
|
38 |
|Sabiá-7B| 48.5|
|
39 |
|
40 |
-
|
41 |
|
42 |
Below we show the average results on 6 English datasets: PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OpenBookQA.
|
43 |
|
@@ -47,6 +97,7 @@ Below we show the average results on 6 English datasets: PIQA, HellaSwag, WinoGr
|
|
47 |
|Sabiá-7B| 49.0|
|
48 |
|
49 |
|
|
|
50 |
|
51 |
Please use the following bibtex to cite our paper:
|
52 |
```
|
|
|
23 |
|
24 |
**Paper:** For more details, please refer to our paper: [Sabiá: Portuguese Large Language Models](https://arxiv.org/pdf/2304.07880.pdf)
|
25 |
|
|
|
26 |
|
27 |
+
## Few-shot Example
|
28 |
+
|
29 |
+
Given that Sabiá-7B was trained solely on a language modeling objective without fine-tuning for instruction following, it is recommended for few-shot tasks rather than zero-shot tasks, like in the example below.
|
30 |
+
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
34 |
+
|
35 |
+
tokenizer = LlamaTokenizer.from_pretrained("maritaca-ai/sabia-7b")
|
36 |
+
model = LlamaForCausalLM.from_pretrained(
|
37 |
+
"maritaca-ai/sabia-7b",
|
38 |
+
device_map="auto", # Automatically loads the model in the GPU, if there is one. Requires pip install acelerate
|
39 |
+
low_cpu_mem_usage=True,
|
40 |
+
torch_dtype=torch.bfloat16 # If your GPU does not support bfloat16, change to torch.float16
|
41 |
+
)
|
42 |
+
|
43 |
+
prompt = """Classifique a resenha de filme como "positiva" ou "negativa".
|
44 |
+
|
45 |
+
Resenha: Gostei muito do filme, é o melhor do ano!
|
46 |
+
Classe: positiva
|
47 |
+
|
48 |
+
Resenha: O filme deixa muito a desejar.
|
49 |
+
Classe: negativa
|
50 |
+
|
51 |
+
Resenha: Apesar de longo, valeu o ingresso.
|
52 |
+
Classe:"""
|
53 |
+
|
54 |
+
input_ids = tokenizer(prompt, return_tensors="pt")
|
55 |
+
|
56 |
+
output = model.generate(
|
57 |
+
input_ids["input_ids"].to("cuda"),
|
58 |
+
max_length=1024,
|
59 |
+
eos_token_id=tokenizer.encode("\n")) # Stop generation when a "\n" token is dectected
|
60 |
+
|
61 |
+
# The output contains the input tokens, so we have to skip them.
|
62 |
+
output = output[0][len(input_ids["input_ids"][0]):]
|
63 |
+
|
64 |
+
print(tokenizer.decode(output, skip_special_tokens=True))
|
65 |
+
```
|
66 |
+
|
67 |
+
If your GPU does not have enough RAM, try using int8 precision.
|
68 |
+
However, expect some degradation in the model output quality when compared to fp16 or bf16.
|
69 |
+
```python
|
70 |
+
model = LlamaForCausalLM.from_pretrained(
|
71 |
+
"maritaca-ai/sabia-7b",
|
72 |
+
device_map="auto",
|
73 |
+
low_cpu_mem_usage=True,
|
74 |
+
load_in_8bit=True, # Requires pip install bitsandbytes
|
75 |
+
)
|
76 |
+
```
|
77 |
+
|
78 |
+
## Results in Portuguese
|
79 |
|
80 |
Below we show the results on the Poeta benchmark, which consists of 14 Portuguese datasets.
|
81 |
|
|
|
87 |
|LLaMA-2-7B| 43.7|
|
88 |
|Sabiá-7B| 48.5|
|
89 |
|
90 |
+
## Results in English
|
91 |
|
92 |
Below we show the average results on 6 English datasets: PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OpenBookQA.
|
93 |
|
|
|
97 |
|Sabiá-7B| 49.0|
|
98 |
|
99 |
|
100 |
+
## Citation
|
101 |
|
102 |
Please use the following bibtex to cite our paper:
|
103 |
```
|