marinarosell commited on
Commit
644a41d
·
verified ·
1 Parent(s): 62ce1b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -186
README.md CHANGED
@@ -1,199 +1,125 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - facebook
5
+ - meta
6
+ - llama
7
+ - llama-3
8
+ - pytorch
9
+ datasets:
10
+ - allenai/c4
11
+ language:
12
+ - en
13
+ base_model:
14
+ - meta-llama/Meta-Llama-3-8B-Instruct
15
  ---
16
 
17
+ # Model Card for Meta-Llama-3-8B-Instruct-GPTQ-4bit-gs32
18
 
19
  <!-- Provide a quick summary of what the model is/does. -->
20
+ This model has been quantized to optimize performance and reduce memory usage without compromising accuracy significantly. The quantization process was performed using GPTQ with the `GPTQConfig` class from the `transformers` library.
21
 
22
+ Original Model: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
23
 
24
+ Model creator: [Meta](https://huggingface.co/meta-llama)
25
 
 
26
 
27
+ ## Quantization Configuration
28
 
29
  <!-- Provide a longer summary of what this model is. -->
30
 
31
+ - Bits: 4
32
+ - Data Type: INT4
33
+ - GPTQ group size: 32
34
+ - Act Order: True
35
+ - GPTQ Calibration Dataset: [C4](https://huggingface.co/datasets/allenai/c4)
36
+ - Model size: 6.14GB
37
+
38
+ For more details, see `quantization_config.json`
39
+
40
+ ## Usage
41
+
42
+ This model can be used with Transformers the same way as the original Meta-Llama-3-8B-Instruct:
43
+
44
+ ### Transformers pipeline
45
+
46
+ ```python
47
+ import transformers
48
+ import torch
49
+
50
+ model_id = "marinarosell/Meta-Llama-3-8B-Instruct-GPTQ-4bit-gs32"
51
+
52
+ pipeline = transformers.pipeline(
53
+ "text-generation",
54
+ model=model_id,
55
+ model_kwargs={"torch_dtype": torch.bfloat16},
56
+ device_map="auto",
57
+ )
58
+
59
+ messages = [
60
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
61
+ {"role": "user", "content": "Who are you?"},
62
+ ]
63
+
64
+ terminators = [
65
+ pipeline.tokenizer.eos_token_id,
66
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
67
+ ]
68
+
69
+ outputs = pipeline(
70
+ messages,
71
+ max_new_tokens=256,
72
+ eos_token_id=terminators,
73
+ do_sample=True,
74
+ temperature=0.6,
75
+ top_p=0.9,
76
+ )
77
+ print(outputs[0]["generated_text"][-1])
78
+ ```
79
+
80
+ ### Transformers AutoModelForCausalLM
81
+
82
+ ```python
83
+ from transformers import AutoTokenizer, AutoModelForCausalLM
84
+ import torch
85
+
86
+ model_id = "marinarosell/Meta-Llama-3-8B-Instruct-GPTQ-4bit-gs32"
87
+
88
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
89
+ model = AutoModelForCausalLM.from_pretrained(
90
+ model_id,
91
+ torch_dtype=torch.bfloat16,
92
+ device_map="auto",
93
+ )
94
+
95
+ messages = [
96
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
97
+ {"role": "user", "content": "Who are you?"},
98
+ ]
99
+
100
+ input_ids = tokenizer.apply_chat_template(
101
+ messages,
102
+ add_generation_prompt=True,
103
+ return_tensors="pt"
104
+ ).to(model.device)
105
+
106
+ terminators = [
107
+ tokenizer.eos_token_id,
108
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
109
+ ]
110
+
111
+ outputs = model.generate(
112
+ input_ids,
113
+ max_new_tokens=256,
114
+ eos_token_id=terminators,
115
+ do_sample=True,
116
+ temperature=0.6,
117
+ top_p=0.9,
118
+ )
119
+ response = outputs[0][input_ids.shape[-1]:]
120
+ print(tokenizer.decode(response, skip_special_tokens=True))
121
+ ```
122
+
123
+ ### Example Applications
124
+
125
+ Chatbots: Lightweight conversational agents.