marinarosell
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,125 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
## Model Details
|
13 |
|
14 |
-
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- facebook
|
5 |
+
- meta
|
6 |
+
- llama
|
7 |
+
- llama-3
|
8 |
+
- pytorch
|
9 |
+
datasets:
|
10 |
+
- allenai/c4
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
base_model:
|
14 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
15 |
---
|
16 |
|
17 |
+
# Model Card for Meta-Llama-3-8B-Instruct-GPTQ-4bit-gs32
|
18 |
|
19 |
<!-- Provide a quick summary of what the model is/does. -->
|
20 |
+
This model has been quantized to optimize performance and reduce memory usage without compromising accuracy significantly. The quantization process was performed using GPTQ with the `GPTQConfig` class from the `transformers` library.
|
21 |
|
22 |
+
Original Model: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
23 |
|
24 |
+
Model creator: [Meta](https://huggingface.co/meta-llama)
|
25 |
|
|
|
26 |
|
27 |
+
## Quantization Configuration
|
28 |
|
29 |
<!-- Provide a longer summary of what this model is. -->
|
30 |
|
31 |
+
- Bits: 4
|
32 |
+
- Data Type: INT4
|
33 |
+
- GPTQ group size: 32
|
34 |
+
- Act Order: True
|
35 |
+
- GPTQ Calibration Dataset: [C4](https://huggingface.co/datasets/allenai/c4)
|
36 |
+
- Model size: 6.14GB
|
37 |
+
|
38 |
+
For more details, see `quantization_config.json`
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
This model can be used with Transformers the same way as the original Meta-Llama-3-8B-Instruct:
|
43 |
+
|
44 |
+
### Transformers pipeline
|
45 |
+
|
46 |
+
```python
|
47 |
+
import transformers
|
48 |
+
import torch
|
49 |
+
|
50 |
+
model_id = "marinarosell/Meta-Llama-3-8B-Instruct-GPTQ-4bit-gs32"
|
51 |
+
|
52 |
+
pipeline = transformers.pipeline(
|
53 |
+
"text-generation",
|
54 |
+
model=model_id,
|
55 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
56 |
+
device_map="auto",
|
57 |
+
)
|
58 |
+
|
59 |
+
messages = [
|
60 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
61 |
+
{"role": "user", "content": "Who are you?"},
|
62 |
+
]
|
63 |
+
|
64 |
+
terminators = [
|
65 |
+
pipeline.tokenizer.eos_token_id,
|
66 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
67 |
+
]
|
68 |
+
|
69 |
+
outputs = pipeline(
|
70 |
+
messages,
|
71 |
+
max_new_tokens=256,
|
72 |
+
eos_token_id=terminators,
|
73 |
+
do_sample=True,
|
74 |
+
temperature=0.6,
|
75 |
+
top_p=0.9,
|
76 |
+
)
|
77 |
+
print(outputs[0]["generated_text"][-1])
|
78 |
+
```
|
79 |
+
|
80 |
+
### Transformers AutoModelForCausalLM
|
81 |
+
|
82 |
+
```python
|
83 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
84 |
+
import torch
|
85 |
+
|
86 |
+
model_id = "marinarosell/Meta-Llama-3-8B-Instruct-GPTQ-4bit-gs32"
|
87 |
+
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(
|
90 |
+
model_id,
|
91 |
+
torch_dtype=torch.bfloat16,
|
92 |
+
device_map="auto",
|
93 |
+
)
|
94 |
+
|
95 |
+
messages = [
|
96 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
97 |
+
{"role": "user", "content": "Who are you?"},
|
98 |
+
]
|
99 |
+
|
100 |
+
input_ids = tokenizer.apply_chat_template(
|
101 |
+
messages,
|
102 |
+
add_generation_prompt=True,
|
103 |
+
return_tensors="pt"
|
104 |
+
).to(model.device)
|
105 |
+
|
106 |
+
terminators = [
|
107 |
+
tokenizer.eos_token_id,
|
108 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
109 |
+
]
|
110 |
+
|
111 |
+
outputs = model.generate(
|
112 |
+
input_ids,
|
113 |
+
max_new_tokens=256,
|
114 |
+
eos_token_id=terminators,
|
115 |
+
do_sample=True,
|
116 |
+
temperature=0.6,
|
117 |
+
top_p=0.9,
|
118 |
+
)
|
119 |
+
response = outputs[0][input_ids.shape[-1]:]
|
120 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
121 |
+
```
|
122 |
+
|
123 |
+
### Example Applications
|
124 |
+
|
125 |
+
Chatbots: Lightweight conversational agents.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|