update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: MiniLM-evidence-types
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# MiniLM-evidence-types
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.8672
|
20 |
+
- Macro f1: 0.3726
|
21 |
+
- Weighted f1: 0.7030
|
22 |
+
- Accuracy: 0.7161
|
23 |
+
- Balanced accuracy: 0.3616
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:|
|
55 |
+
| 1.4108 | 1.0 | 250 | 1.2698 | 0.1966 | 0.6084 | 0.6735 | 0.2195 |
|
56 |
+
| 1.1452 | 2.0 | 500 | 1.0985 | 0.3484 | 0.6914 | 0.7116 | 0.3536 |
|
57 |
+
| 0.9711 | 3.0 | 750 | 1.0901 | 0.2606 | 0.6413 | 0.6446 | 0.2932 |
|
58 |
+
| 0.8437 | 4.0 | 1000 | 1.0197 | 0.2764 | 0.7024 | 0.7237 | 0.2783 |
|
59 |
+
| 0.7186 | 5.0 | 1250 | 1.0895 | 0.2847 | 0.6824 | 0.6963 | 0.2915 |
|
60 |
+
| 0.6312 | 6.0 | 1500 | 1.1296 | 0.3487 | 0.6888 | 0.6948 | 0.3377 |
|
61 |
+
| 0.5311 | 7.0 | 1750 | 1.1515 | 0.3591 | 0.6982 | 0.7024 | 0.3496 |
|
62 |
+
| 0.4737 | 8.0 | 2000 | 1.1962 | 0.3626 | 0.7185 | 0.7314 | 0.3415 |
|
63 |
+
| 0.4047 | 9.0 | 2250 | 1.3313 | 0.3121 | 0.6920 | 0.7085 | 0.3033 |
|
64 |
+
| 0.3753 | 10.0 | 2500 | 1.3993 | 0.3628 | 0.6976 | 0.7047 | 0.3495 |
|
65 |
+
| 0.3217 | 11.0 | 2750 | 1.5078 | 0.3560 | 0.6958 | 0.7055 | 0.3464 |
|
66 |
+
| 0.3079 | 12.0 | 3000 | 1.5875 | 0.3685 | 0.6968 | 0.7062 | 0.3514 |
|
67 |
+
| 0.2623 | 13.0 | 3250 | 1.6470 | 0.3606 | 0.6976 | 0.7070 | 0.3490 |
|
68 |
+
| 0.2393 | 14.0 | 3500 | 1.7164 | 0.3714 | 0.7069 | 0.7207 | 0.3551 |
|
69 |
+
| 0.2335 | 15.0 | 3750 | 1.8151 | 0.3597 | 0.6975 | 0.7123 | 0.3466 |
|
70 |
+
| 0.2255 | 16.0 | 4000 | 1.7838 | 0.3940 | 0.7034 | 0.7123 | 0.3869 |
|
71 |
+
| 0.213 | 17.0 | 4250 | 1.8328 | 0.3725 | 0.6964 | 0.7062 | 0.3704 |
|
72 |
+
| 0.1908 | 18.0 | 4500 | 1.8788 | 0.3708 | 0.7019 | 0.7154 | 0.3591 |
|
73 |
+
| 0.1734 | 19.0 | 4750 | 1.8574 | 0.3752 | 0.7031 | 0.7161 | 0.3619 |
|
74 |
+
| 0.1807 | 20.0 | 5000 | 1.8672 | 0.3726 | 0.7030 | 0.7161 | 0.3616 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.19.2
|
80 |
+
- Pytorch 1.11.0+cu113
|
81 |
+
- Datasets 2.2.2
|
82 |
+
- Tokenizers 0.12.1
|