MedQuAD / fine_tune_gpt2_medquad.py
marianeft's picture
Update fine_tune_gpt2_medquad.py
030c7b9 verified
raw
history blame
1.3 kB
import pandas as pd
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load MedQuAD dataset
dataset = load_dataset("marianeft/MedQuAD", split="train")
# Load the GPT-2 model and tokenizer
model_name = "gpt2" # Or use a medical fine-tuned model
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# Preprocess the dataset
def preprocess(example):
return {"text": f"{example['question']} {example['answer']}"}
dataset = dataset.map(preprocess)
# Tokenize the dataset
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=1,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
logging_dir="./logs",
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets,
)
# Fine-tune the model
trainer.train()
# Save the model to a new directory
model.save_pretrained("fine_tuned_medquad")
tokenizer.save_pretrained("fine_tuned_medquad")