import pandas as pd | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Load MedQuAD dataset | |
dataset = load_dataset("marianeft/MedQuAD", split="train") | |
# Load the GPT-2 model and tokenizer | |
model_name = "gpt2" # Or use a medical fine-tuned model | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
# Preprocess the dataset | |
def preprocess(example): | |
return {"text": f"{example['question']} {example['answer']}"} | |
dataset = dataset.map(preprocess) | |
# Tokenize the dataset | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
num_train_epochs=1, | |
per_device_train_batch_size=4, | |
save_steps=10_000, | |
save_total_limit=2, | |
logging_dir="./logs", | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets, | |
) | |
# Fine-tune the model | |
trainer.train() | |
# Save the model to a new directory | |
model.save_pretrained("fine_tuned_medquad") | |
tokenizer.save_pretrained("fine_tuned_medquad") |