initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- data/lang_bpe_500/HLG.pt +3 -0
- data/lang_bpe_500/L.pt +3 -0
- data/lang_bpe_500/LG.pt +3 -0
- data/lang_bpe_500/Linv.pt +3 -0
- data/lang_bpe_500/bpe.model +3 -0
- data/lang_bpe_500/tokens.txt +502 -0
- data/lang_bpe_500/words.txt +0 -0
- decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
- decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
- decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
- decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
- decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-11-21 +35 -0
- decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-07-27 +35 -0
- decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-2023-04-04-11-02-26 +30 -0
- decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-2023-04-04-12-26-13 +50 -0
- decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
- decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
- decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +2 -0
- decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +2 -0
- decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt +0 -0
- decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt +0 -0
- decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt +0 -0
- decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt +0 -0
- decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt +0 -0
- decoding-results/greedy_search/errs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt +0 -0
- decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-45-22 +43 -0
- decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-42-45 +28 -0
- decoding-results/greedy_search/log-decode-epoch-99-avg-1-context-2-max-sym-per-frame-1-2023-04-04-10-36-37 +48 -0
- decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-10-58-09 +38 -0
- decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-11-22-52 +38 -0
data/lang_bpe_500/HLG.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5dbbe8b485c0cb37d11e07e8e734990f1e40a2d00fe9689d8da2e7b6fe72883
|
3 |
+
size 845007583
|
data/lang_bpe_500/L.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b88996f918737fba67fbd29152018b51a537c16ce0718a2b43d5140583224e
|
3 |
+
size 19025703
|
data/lang_bpe_500/LG.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb9f021c7aad79d45dc275ba8154a430c4f660a319dcb872cd52500f25553d6
|
3 |
+
size 249852195
|
data/lang_bpe_500/Linv.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc8b3687a1b8f0811a84106b3b310642566c7b1bc282a929878f9269507a2c6
|
3 |
+
size 19025703
|
data/lang_bpe_500/bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
|
3 |
+
size 244865
|
data/lang_bpe_500/tokens.txt
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<blk> 0
|
2 |
+
<sos/eos> 1
|
3 |
+
<unk> 2
|
4 |
+
S 3
|
5 |
+
▁THE 4
|
6 |
+
▁A 5
|
7 |
+
T 6
|
8 |
+
▁AND 7
|
9 |
+
ED 8
|
10 |
+
▁OF 9
|
11 |
+
▁TO 10
|
12 |
+
E 11
|
13 |
+
D 12
|
14 |
+
N 13
|
15 |
+
ING 14
|
16 |
+
▁IN 15
|
17 |
+
Y 16
|
18 |
+
M 17
|
19 |
+
C 18
|
20 |
+
▁I 19
|
21 |
+
A 20
|
22 |
+
P 21
|
23 |
+
▁HE 22
|
24 |
+
R 23
|
25 |
+
O 24
|
26 |
+
L 25
|
27 |
+
RE 26
|
28 |
+
I 27
|
29 |
+
U 28
|
30 |
+
ER 29
|
31 |
+
▁IT 30
|
32 |
+
LY 31
|
33 |
+
▁THAT 32
|
34 |
+
▁WAS 33
|
35 |
+
▁ 34
|
36 |
+
▁S 35
|
37 |
+
AR 36
|
38 |
+
▁BE 37
|
39 |
+
F 38
|
40 |
+
▁C 39
|
41 |
+
IN 40
|
42 |
+
B 41
|
43 |
+
▁FOR 42
|
44 |
+
OR 43
|
45 |
+
LE 44
|
46 |
+
' 45
|
47 |
+
▁HIS 46
|
48 |
+
▁YOU 47
|
49 |
+
AL 48
|
50 |
+
▁RE 49
|
51 |
+
V 50
|
52 |
+
▁B 51
|
53 |
+
G 52
|
54 |
+
RI 53
|
55 |
+
▁E 54
|
56 |
+
▁WITH 55
|
57 |
+
▁T 56
|
58 |
+
▁AS 57
|
59 |
+
LL 58
|
60 |
+
▁P 59
|
61 |
+
▁HER 60
|
62 |
+
ST 61
|
63 |
+
▁HAD 62
|
64 |
+
▁SO 63
|
65 |
+
▁F 64
|
66 |
+
W 65
|
67 |
+
CE 66
|
68 |
+
▁IS 67
|
69 |
+
ND 68
|
70 |
+
▁NOT 69
|
71 |
+
TH 70
|
72 |
+
▁BUT 71
|
73 |
+
EN 72
|
74 |
+
▁SHE 73
|
75 |
+
▁ON 74
|
76 |
+
VE 75
|
77 |
+
ON 76
|
78 |
+
SE 77
|
79 |
+
▁DE 78
|
80 |
+
UR 79
|
81 |
+
▁G 80
|
82 |
+
CH 81
|
83 |
+
K 82
|
84 |
+
TER 83
|
85 |
+
▁AT 84
|
86 |
+
IT 85
|
87 |
+
▁ME 86
|
88 |
+
RO 87
|
89 |
+
NE 88
|
90 |
+
RA 89
|
91 |
+
ES 90
|
92 |
+
IL 91
|
93 |
+
NG 92
|
94 |
+
IC 93
|
95 |
+
▁NO 94
|
96 |
+
▁HIM 95
|
97 |
+
ENT 96
|
98 |
+
IR 97
|
99 |
+
▁WE 98
|
100 |
+
H 99
|
101 |
+
▁DO 100
|
102 |
+
▁ALL 101
|
103 |
+
▁HAVE 102
|
104 |
+
LO 103
|
105 |
+
▁BY 104
|
106 |
+
▁MY 105
|
107 |
+
▁MO 106
|
108 |
+
▁THIS 107
|
109 |
+
LA 108
|
110 |
+
▁ST 109
|
111 |
+
▁WHICH 110
|
112 |
+
▁CON 111
|
113 |
+
▁THEY 112
|
114 |
+
CK 113
|
115 |
+
TE 114
|
116 |
+
▁SAID 115
|
117 |
+
▁FROM 116
|
118 |
+
▁GO 117
|
119 |
+
▁WHO 118
|
120 |
+
▁TH 119
|
121 |
+
▁OR 120
|
122 |
+
▁D 121
|
123 |
+
▁W 122
|
124 |
+
VER 123
|
125 |
+
LI 124
|
126 |
+
▁SE 125
|
127 |
+
▁ONE 126
|
128 |
+
▁CA 127
|
129 |
+
▁AN 128
|
130 |
+
▁LA 129
|
131 |
+
▁WERE 130
|
132 |
+
EL 131
|
133 |
+
▁HA 132
|
134 |
+
▁MAN 133
|
135 |
+
▁FA 134
|
136 |
+
▁EX 135
|
137 |
+
AD 136
|
138 |
+
▁SU 137
|
139 |
+
RY 138
|
140 |
+
▁MI 139
|
141 |
+
AT 140
|
142 |
+
▁BO 141
|
143 |
+
▁WHEN 142
|
144 |
+
AN 143
|
145 |
+
THER 144
|
146 |
+
PP 145
|
147 |
+
ATION 146
|
148 |
+
▁FI 147
|
149 |
+
▁WOULD 148
|
150 |
+
▁PRO 149
|
151 |
+
OW 150
|
152 |
+
ET 151
|
153 |
+
▁O 152
|
154 |
+
▁THERE 153
|
155 |
+
▁HO 154
|
156 |
+
ION 155
|
157 |
+
▁WHAT 156
|
158 |
+
▁FE 157
|
159 |
+
▁PA 158
|
160 |
+
US 159
|
161 |
+
MENT 160
|
162 |
+
▁MA 161
|
163 |
+
UT 162
|
164 |
+
▁OUT 163
|
165 |
+
▁THEIR 164
|
166 |
+
▁IF 165
|
167 |
+
▁LI 166
|
168 |
+
▁K 167
|
169 |
+
▁WILL 168
|
170 |
+
▁ARE 169
|
171 |
+
ID 170
|
172 |
+
▁RO 171
|
173 |
+
DE 172
|
174 |
+
TION 173
|
175 |
+
▁WA 174
|
176 |
+
PE 175
|
177 |
+
▁UP 176
|
178 |
+
▁SP 177
|
179 |
+
▁PO 178
|
180 |
+
IGHT 179
|
181 |
+
▁UN 180
|
182 |
+
RU 181
|
183 |
+
▁LO 182
|
184 |
+
AS 183
|
185 |
+
OL 184
|
186 |
+
▁LE 185
|
187 |
+
▁BEEN 186
|
188 |
+
▁SH 187
|
189 |
+
▁RA 188
|
190 |
+
▁SEE 189
|
191 |
+
KE 190
|
192 |
+
UL 191
|
193 |
+
TED 192
|
194 |
+
▁SA 193
|
195 |
+
UN 194
|
196 |
+
UND 195
|
197 |
+
ANT 196
|
198 |
+
▁NE 197
|
199 |
+
IS 198
|
200 |
+
▁THEM 199
|
201 |
+
CI 200
|
202 |
+
GE 201
|
203 |
+
▁COULD 202
|
204 |
+
▁DIS 203
|
205 |
+
OM 204
|
206 |
+
ISH 205
|
207 |
+
HE 206
|
208 |
+
EST 207
|
209 |
+
▁SOME 208
|
210 |
+
ENCE 209
|
211 |
+
ITY 210
|
212 |
+
IVE 211
|
213 |
+
▁US 212
|
214 |
+
▁MORE 213
|
215 |
+
▁EN 214
|
216 |
+
ARD 215
|
217 |
+
ATE 216
|
218 |
+
▁YOUR 217
|
219 |
+
▁INTO 218
|
220 |
+
▁KNOW 219
|
221 |
+
▁CO 220
|
222 |
+
ANCE 221
|
223 |
+
▁TIME 222
|
224 |
+
▁WI 223
|
225 |
+
▁YE 224
|
226 |
+
AGE 225
|
227 |
+
▁NOW 226
|
228 |
+
TI 227
|
229 |
+
FF 228
|
230 |
+
ABLE 229
|
231 |
+
▁VERY 230
|
232 |
+
▁LIKE 231
|
233 |
+
AM 232
|
234 |
+
HI 233
|
235 |
+
Z 234
|
236 |
+
▁OTHER 235
|
237 |
+
▁THAN 236
|
238 |
+
▁LITTLE 237
|
239 |
+
▁DID 238
|
240 |
+
▁LOOK 239
|
241 |
+
TY 240
|
242 |
+
ERS 241
|
243 |
+
▁CAN 242
|
244 |
+
▁CHA 243
|
245 |
+
▁AR 244
|
246 |
+
X 245
|
247 |
+
FUL 246
|
248 |
+
UGH 247
|
249 |
+
▁BA 248
|
250 |
+
▁DAY 249
|
251 |
+
▁ABOUT 250
|
252 |
+
TEN 251
|
253 |
+
IM 252
|
254 |
+
▁ANY 253
|
255 |
+
▁PRE 254
|
256 |
+
▁OVER 255
|
257 |
+
IES 256
|
258 |
+
NESS 257
|
259 |
+
ME 258
|
260 |
+
BLE 259
|
261 |
+
▁M 260
|
262 |
+
ROW 261
|
263 |
+
▁HAS 262
|
264 |
+
▁GREAT 263
|
265 |
+
▁VI 264
|
266 |
+
TA 265
|
267 |
+
▁AFTER 266
|
268 |
+
PER 267
|
269 |
+
▁AGAIN 268
|
270 |
+
HO 269
|
271 |
+
SH 270
|
272 |
+
▁UPON 271
|
273 |
+
▁DI 272
|
274 |
+
▁HAND 273
|
275 |
+
▁COM 274
|
276 |
+
IST 275
|
277 |
+
TURE 276
|
278 |
+
▁STA 277
|
279 |
+
▁THEN 278
|
280 |
+
▁SHOULD 279
|
281 |
+
▁GA 280
|
282 |
+
OUS 281
|
283 |
+
OUR 282
|
284 |
+
▁WELL 283
|
285 |
+
▁ONLY 284
|
286 |
+
MAN 285
|
287 |
+
▁GOOD 286
|
288 |
+
▁TWO 287
|
289 |
+
▁MAR 288
|
290 |
+
▁SAY 289
|
291 |
+
▁HU 290
|
292 |
+
TING 291
|
293 |
+
▁OUR 292
|
294 |
+
RESS 293
|
295 |
+
▁DOWN 294
|
296 |
+
IOUS 295
|
297 |
+
▁BEFORE 296
|
298 |
+
▁DA 297
|
299 |
+
▁NA 298
|
300 |
+
QUI 299
|
301 |
+
▁MADE 300
|
302 |
+
▁EVERY 301
|
303 |
+
▁OLD 302
|
304 |
+
▁EVEN 303
|
305 |
+
IG 304
|
306 |
+
▁COME 305
|
307 |
+
▁GRA 306
|
308 |
+
▁RI 307
|
309 |
+
▁LONG 308
|
310 |
+
OT 309
|
311 |
+
SIDE 310
|
312 |
+
WARD 311
|
313 |
+
▁FO 312
|
314 |
+
▁WHERE 313
|
315 |
+
MO 314
|
316 |
+
LESS 315
|
317 |
+
▁SC 316
|
318 |
+
▁MUST 317
|
319 |
+
▁NEVER 318
|
320 |
+
▁HOW 319
|
321 |
+
▁CAME 320
|
322 |
+
▁SUCH 321
|
323 |
+
▁RU 322
|
324 |
+
▁TAKE 323
|
325 |
+
▁WO 324
|
326 |
+
▁CAR 325
|
327 |
+
UM 326
|
328 |
+
AK 327
|
329 |
+
▁THINK 328
|
330 |
+
▁MUCH 329
|
331 |
+
▁MISTER 330
|
332 |
+
▁MAY 331
|
333 |
+
▁JO 332
|
334 |
+
▁WAY 333
|
335 |
+
▁COMP 334
|
336 |
+
▁THOUGHT 335
|
337 |
+
▁STO 336
|
338 |
+
▁MEN 337
|
339 |
+
▁BACK 338
|
340 |
+
▁DON 339
|
341 |
+
J 340
|
342 |
+
▁LET 341
|
343 |
+
▁TRA 342
|
344 |
+
▁FIRST 343
|
345 |
+
▁JUST 344
|
346 |
+
▁VA 345
|
347 |
+
▁OWN 346
|
348 |
+
▁PLA 347
|
349 |
+
▁MAKE 348
|
350 |
+
ATED 349
|
351 |
+
▁HIMSELF 350
|
352 |
+
▁WENT 351
|
353 |
+
▁PI 352
|
354 |
+
GG 353
|
355 |
+
RING 354
|
356 |
+
▁DU 355
|
357 |
+
▁MIGHT 356
|
358 |
+
▁PART 357
|
359 |
+
▁GIVE 358
|
360 |
+
▁IMP 359
|
361 |
+
▁BU 360
|
362 |
+
▁PER 361
|
363 |
+
▁PLACE 362
|
364 |
+
▁HOUSE 363
|
365 |
+
▁THROUGH 364
|
366 |
+
IAN 365
|
367 |
+
▁SW 366
|
368 |
+
▁UNDER 367
|
369 |
+
QUE 368
|
370 |
+
▁AWAY 369
|
371 |
+
▁LOVE 370
|
372 |
+
QUA 371
|
373 |
+
▁LIFE 372
|
374 |
+
▁GET 373
|
375 |
+
▁WITHOUT 374
|
376 |
+
▁PASS 375
|
377 |
+
▁TURN 376
|
378 |
+
IGN 377
|
379 |
+
▁HEAD 378
|
380 |
+
▁MOST 379
|
381 |
+
▁THOSE 380
|
382 |
+
▁SHALL 381
|
383 |
+
▁EYES 382
|
384 |
+
▁COL 383
|
385 |
+
▁STILL 384
|
386 |
+
▁NIGHT 385
|
387 |
+
▁NOTHING 386
|
388 |
+
ITION 387
|
389 |
+
HA 388
|
390 |
+
▁TELL 389
|
391 |
+
▁WORK 390
|
392 |
+
▁LAST 391
|
393 |
+
▁NEW 392
|
394 |
+
▁FACE 393
|
395 |
+
▁HI 394
|
396 |
+
▁WORD 395
|
397 |
+
▁FOUND 396
|
398 |
+
▁COUNT 397
|
399 |
+
▁OB 398
|
400 |
+
▁WHILE 399
|
401 |
+
▁SHA 400
|
402 |
+
▁MEAN 401
|
403 |
+
▁SAW 402
|
404 |
+
▁PEOPLE 403
|
405 |
+
▁FRIEND 404
|
406 |
+
▁THREE 405
|
407 |
+
▁ROOM 406
|
408 |
+
▁SAME 407
|
409 |
+
▁THOUGH 408
|
410 |
+
▁RIGHT 409
|
411 |
+
▁CHILD 410
|
412 |
+
▁FATHER 411
|
413 |
+
▁ANOTHER 412
|
414 |
+
▁HEART 413
|
415 |
+
▁WANT 414
|
416 |
+
▁TOOK 415
|
417 |
+
OOK 416
|
418 |
+
▁LIGHT 417
|
419 |
+
▁MISSUS 418
|
420 |
+
▁OPEN 419
|
421 |
+
▁JU 420
|
422 |
+
▁ASKED 421
|
423 |
+
PORT 422
|
424 |
+
▁LEFT 423
|
425 |
+
▁JA 424
|
426 |
+
▁WORLD 425
|
427 |
+
▁HOME 426
|
428 |
+
▁WHY 427
|
429 |
+
▁ALWAYS 428
|
430 |
+
▁ANSWER 429
|
431 |
+
▁SEEMED 430
|
432 |
+
▁SOMETHING 431
|
433 |
+
▁GIRL 432
|
434 |
+
▁BECAUSE 433
|
435 |
+
▁NAME 434
|
436 |
+
▁TOLD 435
|
437 |
+
▁NI 436
|
438 |
+
▁HIGH 437
|
439 |
+
IZE 438
|
440 |
+
▁WOMAN 439
|
441 |
+
▁FOLLOW 440
|
442 |
+
▁RETURN 441
|
443 |
+
▁KNEW 442
|
444 |
+
▁EACH 443
|
445 |
+
▁KIND 444
|
446 |
+
▁JE 445
|
447 |
+
▁ACT 446
|
448 |
+
▁LU 447
|
449 |
+
▁CERTAIN 448
|
450 |
+
▁YEARS 449
|
451 |
+
▁QUITE 450
|
452 |
+
▁APPEAR 451
|
453 |
+
▁BETTER 452
|
454 |
+
▁HALF 453
|
455 |
+
▁PRESENT 454
|
456 |
+
▁PRINCE 455
|
457 |
+
SHIP 456
|
458 |
+
▁ALSO 457
|
459 |
+
▁BEGAN 458
|
460 |
+
▁HAVING 459
|
461 |
+
▁ENOUGH 460
|
462 |
+
▁PERSON 461
|
463 |
+
▁LADY 462
|
464 |
+
▁WHITE 463
|
465 |
+
▁COURSE 464
|
466 |
+
▁VOICE 465
|
467 |
+
▁SPEAK 466
|
468 |
+
▁POWER 467
|
469 |
+
▁MORNING 468
|
470 |
+
▁BETWEEN 469
|
471 |
+
▁AMONG 470
|
472 |
+
▁KEEP 471
|
473 |
+
▁WALK 472
|
474 |
+
▁MATTER 473
|
475 |
+
▁TEA 474
|
476 |
+
▁BELIEVE 475
|
477 |
+
▁SMALL 476
|
478 |
+
▁TALK 477
|
479 |
+
▁FELT 478
|
480 |
+
▁HORSE 479
|
481 |
+
▁MYSELF 480
|
482 |
+
▁SIX 481
|
483 |
+
▁HOWEVER 482
|
484 |
+
▁FULL 483
|
485 |
+
▁HERSELF 484
|
486 |
+
▁POINT 485
|
487 |
+
▁STOOD 486
|
488 |
+
▁HUNDRED 487
|
489 |
+
▁ALMOST 488
|
490 |
+
▁SINCE 489
|
491 |
+
▁LARGE 490
|
492 |
+
▁LEAVE 491
|
493 |
+
▁PERHAPS 492
|
494 |
+
▁DARK 493
|
495 |
+
▁SUDDEN 494
|
496 |
+
▁REPLIED 495
|
497 |
+
▁ANYTHING 496
|
498 |
+
▁WONDER 497
|
499 |
+
▁UNTIL 498
|
500 |
+
Q 499
|
501 |
+
#0 500
|
502 |
+
#1 501
|
data/lang_bpe_500/words.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-11-21
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-06 13:11:21,982 INFO [decode.py:659] Decoding started
|
2 |
+
2023-04-06 13:11:21,982 INFO [decode.py:665] Device: cuda:0
|
3 |
+
2023-04-06 13:11:21,985 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-06 13:11:21,986 INFO [decode.py:677] About to create model
|
5 |
+
2023-04-06 13:11:22,808 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-06 13:11:22,828 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
|
7 |
+
2023-04-06 13:11:28,037 INFO [decode.py:782] Number of model parameters: 70369391
|
8 |
+
2023-04-06 13:11:28,038 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-06 13:11:28,040 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-06 13:11:35,436 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-06 13:12:19,715 INFO [decode.py:569] batch 20/?, cuts processed until now is 1545
|
12 |
+
2023-04-06 13:12:56,621 INFO [decode.py:569] batch 40/?, cuts processed until now is 2375
|
13 |
+
2023-04-06 13:13:27,169 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
14 |
+
2023-04-06 13:13:27,321 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.43% [1277 / 52576, 147 ins, 97 del, 1033 sub ]
|
15 |
+
2023-04-06 13:13:27,669 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
16 |
+
2023-04-06 13:13:27,670 INFO [decode.py:608]
|
17 |
+
For test-clean, WER of different settings are:
|
18 |
+
beam_20.0_max_contexts_8_max_states_64 2.43 best for test-clean
|
19 |
+
|
20 |
+
2023-04-06 13:13:31,899 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
|
21 |
+
2023-04-06 13:14:12,501 INFO [decode.py:569] batch 20/?, cuts processed until now is 1771
|
22 |
+
2023-04-06 13:14:45,255 INFO [decode.py:569] batch 40/?, cuts processed until now is 2696
|
23 |
+
2023-04-06 13:15:02,874 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.7310, 1.5854, 0.8361, 1.3923, 1.6120, 1.5549, 1.4788, 1.4736],
|
24 |
+
device='cuda:0'), covar=tensor([0.0463, 0.0283, 0.0402, 0.0525, 0.0249, 0.0464, 0.0430, 0.0527],
|
25 |
+
device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0035, 0.0037],
|
26 |
+
device='cuda:0'), out_proj_covar=tensor([0.0053, 0.0045, 0.0039, 0.0056, 0.0039, 0.0054, 0.0054, 0.0057],
|
27 |
+
device='cuda:0')
|
28 |
+
2023-04-06 13:15:12,927 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
29 |
+
2023-04-06 13:15:13,083 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 5.99% [3136 / 52343, 326 ins, 311 del, 2499 sub ]
|
30 |
+
2023-04-06 13:15:13,436 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
31 |
+
2023-04-06 13:15:13,437 INFO [decode.py:608]
|
32 |
+
For test-other, WER of different settings are:
|
33 |
+
beam_20.0_max_contexts_8_max_states_64 5.99 best for test-other
|
34 |
+
|
35 |
+
2023-04-06 13:15:13,437 INFO [decode.py:814] Done!
|
decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-07-27
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-06 13:07:27,764 INFO [decode.py:659] Decoding started
|
2 |
+
2023-04-06 13:07:27,764 INFO [decode.py:665] Device: cuda:0
|
3 |
+
2023-04-06 13:07:27,768 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 64, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-06 13:07:27,768 INFO [decode.py:677] About to create model
|
5 |
+
2023-04-06 13:07:28,588 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-06 13:07:28,608 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
|
7 |
+
2023-04-06 13:07:33,838 INFO [decode.py:782] Number of model parameters: 70369391
|
8 |
+
2023-04-06 13:07:33,838 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-06 13:07:33,841 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-06 13:07:40,955 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-06 13:08:05,123 INFO [zipformer.py:2441] attn_weights_entropy = tensor([3.8971, 3.9030, 2.9892, 4.4202, 3.9925, 3.8669, 1.8646, 3.8496],
|
12 |
+
device='cuda:0'), covar=tensor([0.1528, 0.0781, 0.3562, 0.0964, 0.2049, 0.2446, 0.6687, 0.2063],
|
13 |
+
device='cuda:0'), in_proj_covar=tensor([0.0265, 0.0238, 0.0290, 0.0333, 0.0331, 0.0273, 0.0293, 0.0287],
|
14 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
|
15 |
+
device='cuda:0')
|
16 |
+
2023-04-06 13:08:24,743 INFO [decode.py:569] batch 20/?, cuts processed until now is 1545
|
17 |
+
2023-04-06 13:09:01,013 INFO [decode.py:569] batch 40/?, cuts processed until now is 2375
|
18 |
+
2023-04-06 13:09:31,347 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
19 |
+
2023-04-06 13:09:31,497 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.27% [1196 / 52576, 129 ins, 100 del, 967 sub ]
|
20 |
+
2023-04-06 13:09:31,841 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
21 |
+
2023-04-06 13:09:31,842 INFO [decode.py:608]
|
22 |
+
For test-clean, WER of different settings are:
|
23 |
+
beam_20.0_max_contexts_8_max_states_64 2.27 best for test-clean
|
24 |
+
|
25 |
+
2023-04-06 13:09:36,034 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
|
26 |
+
2023-04-06 13:10:16,221 INFO [decode.py:569] batch 20/?, cuts processed until now is 1771
|
27 |
+
2023-04-06 13:10:49,392 INFO [decode.py:569] batch 40/?, cuts processed until now is 2696
|
28 |
+
2023-04-06 13:11:16,867 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
29 |
+
2023-04-06 13:11:17,025 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 5.54% [2900 / 52343, 305 ins, 250 del, 2345 sub ]
|
30 |
+
2023-04-06 13:11:17,379 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
|
31 |
+
2023-04-06 13:11:17,380 INFO [decode.py:608]
|
32 |
+
For test-other, WER of different settings are:
|
33 |
+
beam_20.0_max_contexts_8_max_states_64 5.54 best for test-other
|
34 |
+
|
35 |
+
2023-04-06 13:11:17,380 INFO [decode.py:814] Done!
|
decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-2023-04-04-11-02-26
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-04 11:02:26,737 INFO [decode.py:651] Decoding started
|
2 |
+
2023-04-04 11:02:26,737 INFO [decode.py:657] Device: cuda:0
|
3 |
+
2023-04-04 11:02:26,740 INFO [decode.py:667] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '0994afb-dirty', 'icefall-git-date': 'Tue Apr 4 10:59:02 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-04 11:02:26,740 INFO [decode.py:669] About to create model
|
5 |
+
2023-04-04 11:02:27,365 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-04 11:02:27,378 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
|
7 |
+
2023-04-04 11:02:29,736 INFO [decode.py:774] Number of model parameters: 70369391
|
8 |
+
2023-04-04 11:02:29,736 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-04 11:02:29,738 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-04 11:02:37,465 INFO [decode.py:562] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-04 11:03:33,946 INFO [decode.py:562] batch 20/?, cuts processed until now is 1545
|
12 |
+
2023-04-04 11:04:22,204 INFO [decode.py:562] batch 40/?, cuts processed until now is 2375
|
13 |
+
2023-04-04 11:05:08,814 INFO [decode.py:576] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
|
14 |
+
2023-04-04 11:05:08,911 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.47% [1298 / 52576, 160 ins, 96 del, 1042 sub ]
|
15 |
+
2023-04-04 11:05:09,110 INFO [decode.py:587] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
|
16 |
+
2023-04-04 11:05:09,111 INFO [decode.py:601]
|
17 |
+
For test-clean, WER of different settings are:
|
18 |
+
beam_20.0_max_contexts_8_max_states_64 2.47 best for test-clean
|
19 |
+
|
20 |
+
2023-04-04 11:05:15,419 INFO [decode.py:562] batch 0/?, cuts processed until now is 30
|
21 |
+
2023-04-04 11:06:16,018 INFO [decode.py:562] batch 20/?, cuts processed until now is 1771
|
22 |
+
2023-04-04 11:06:47,363 INFO [decode.py:562] batch 40/?, cuts processed until now is 2696
|
23 |
+
2023-04-04 11:07:09,305 INFO [decode.py:576] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
|
24 |
+
2023-04-04 11:07:09,398 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 6.11% [3200 / 52343, 352 ins, 290 del, 2558 sub ]
|
25 |
+
2023-04-04 11:07:09,598 INFO [decode.py:587] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
|
26 |
+
2023-04-04 11:07:09,599 INFO [decode.py:601]
|
27 |
+
For test-other, WER of different settings are:
|
28 |
+
beam_20.0_max_contexts_8_max_states_64 6.11 best for test-other
|
29 |
+
|
30 |
+
2023-04-04 11:07:09,599 INFO [decode.py:806] Done!
|
decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-2023-04-04-12-26-13
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-04 12:26:13,984 INFO [decode.py:659] Decoding started
|
2 |
+
2023-04-04 12:26:13,984 INFO [decode.py:665] Device: cuda:0
|
3 |
+
2023-04-04 12:26:13,992 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '475430b-dirty', 'icefall-git-date': 'Tue Apr 4 11:28:58 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 64, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-04 12:26:13,992 INFO [decode.py:677] About to create model
|
5 |
+
2023-04-04 12:26:14,594 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-04 12:26:14,607 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
|
7 |
+
2023-04-04 12:26:16,838 INFO [decode.py:782] Number of model parameters: 70369391
|
8 |
+
2023-04-04 12:26:16,838 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-04 12:26:16,841 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-04 12:26:22,248 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-04 12:26:37,082 INFO [zipformer.py:2401] attn_weights_entropy = tensor([3.9816, 3.9442, 2.9777, 4.5003, 4.1074, 3.9360, 1.7938, 3.8771],
|
12 |
+
device='cuda:0'), covar=tensor([0.1328, 0.0678, 0.3053, 0.0896, 0.1707, 0.1995, 0.6684, 0.2012],
|
13 |
+
device='cuda:0'), in_proj_covar=tensor([0.0258, 0.0230, 0.0281, 0.0324, 0.0320, 0.0267, 0.0288, 0.0280],
|
14 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
|
15 |
+
device='cuda:0')
|
16 |
+
2023-04-04 12:26:59,982 INFO [decode.py:569] batch 20/?, cuts processed until now is 1545
|
17 |
+
2023-04-04 12:27:01,565 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.6970, 1.9492, 0.9371, 1.3477, 2.0484, 1.5397, 1.4495, 1.4722],
|
18 |
+
device='cuda:0'), covar=tensor([0.0490, 0.0291, 0.0386, 0.0581, 0.0219, 0.0526, 0.0508, 0.0593],
|
19 |
+
device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0034, 0.0036],
|
20 |
+
device='cuda:0'), out_proj_covar=tensor([0.0051, 0.0043, 0.0038, 0.0053, 0.0037, 0.0052, 0.0052, 0.0054],
|
21 |
+
device='cuda:0')
|
22 |
+
2023-04-04 12:27:19,645 INFO [zipformer.py:2401] attn_weights_entropy = tensor([4.0814, 4.0133, 2.9767, 4.5842, 4.2312, 4.0406, 1.7885, 3.9094],
|
23 |
+
device='cuda:0'), covar=tensor([0.1133, 0.0571, 0.2740, 0.0753, 0.1763, 0.1667, 0.6636, 0.1986],
|
24 |
+
device='cuda:0'), in_proj_covar=tensor([0.0258, 0.0230, 0.0281, 0.0324, 0.0320, 0.0267, 0.0288, 0.0280],
|
25 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
|
26 |
+
device='cuda:0')
|
27 |
+
2023-04-04 12:27:30,069 INFO [decode.py:569] batch 40/?, cuts processed until now is 2375
|
28 |
+
2023-04-04 12:27:54,759 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
|
29 |
+
2023-04-04 12:27:54,855 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.34% [1231 / 52576, 142 ins, 99 del, 990 sub ]
|
30 |
+
2023-04-04 12:27:55,057 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
|
31 |
+
2023-04-04 12:27:55,057 INFO [decode.py:608]
|
32 |
+
For test-clean, WER of different settings are:
|
33 |
+
beam_20.0_max_contexts_8_max_states_64 2.34 best for test-clean
|
34 |
+
|
35 |
+
2023-04-04 12:27:58,391 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
|
36 |
+
2023-04-04 12:28:33,992 INFO [decode.py:569] batch 20/?, cuts processed until now is 1771
|
37 |
+
2023-04-04 12:28:51,985 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.2778, 2.1054, 2.4532, 2.7704, 2.6064, 2.0049, 1.4088, 2.3488],
|
38 |
+
device='cuda:0'), covar=tensor([0.0651, 0.0710, 0.0442, 0.0255, 0.0299, 0.0649, 0.0782, 0.0321],
|
39 |
+
device='cuda:0'), in_proj_covar=tensor([0.0204, 0.0213, 0.0191, 0.0172, 0.0174, 0.0193, 0.0167, 0.0184],
|
40 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
41 |
+
device='cuda:0')
|
42 |
+
2023-04-04 12:29:01,114 INFO [decode.py:569] batch 40/?, cuts processed until now is 2696
|
43 |
+
2023-04-04 12:29:23,342 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
|
44 |
+
2023-04-04 12:29:23,443 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 5.67% [2970 / 52343, 310 ins, 273 del, 2387 sub ]
|
45 |
+
2023-04-04 12:29:23,648 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
|
46 |
+
2023-04-04 12:29:23,649 INFO [decode.py:608]
|
47 |
+
For test-other, WER of different settings are:
|
48 |
+
beam_20.0_max_contexts_8_max_states_64 5.67 best for test-other
|
49 |
+
|
50 |
+
2023-04-04 12:29:23,649 INFO [decode.py:814] Done!
|
decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 2.43
|
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 2.27
|
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 2.47
|
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 2.34
|
decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 5.99
|
decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 5.54
|
decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 6.11
|
decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_20.0_max_contexts_8_max_states_64 5.67
|
decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-45-22
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-06 10:45:22,213 INFO [decode.py:659] Decoding started
|
2 |
+
2023-04-06 10:45:22,213 INFO [decode.py:665] Device: cuda:0
|
3 |
+
2023-04-06 10:45:22,217 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-06 10:45:22,217 INFO [decode.py:677] About to create model
|
5 |
+
2023-04-06 10:45:23,051 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-06 10:45:23,071 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
|
7 |
+
2023-04-06 10:45:28,421 INFO [decode.py:782] Number of model parameters: 70369391
|
8 |
+
2023-04-06 10:45:28,421 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-06 10:45:28,424 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-06 10:45:34,938 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-06 10:46:11,317 INFO [zipformer.py:2441] attn_weights_entropy = tensor([0.6097, 1.6395, 1.8269, 1.2424, 1.8390, 1.4426, 2.2329, 1.6805],
|
12 |
+
device='cuda:0'), covar=tensor([0.4370, 0.1894, 0.5571, 0.3727, 0.1697, 0.2827, 0.1812, 0.4848],
|
13 |
+
device='cuda:0'), in_proj_covar=tensor([0.0381, 0.0394, 0.0474, 0.0408, 0.0456, 0.0428, 0.0445, 0.0457],
|
14 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
15 |
+
device='cuda:0')
|
16 |
+
2023-04-06 10:46:38,790 INFO [decode.py:569] batch 50/?, cuts processed until now is 2526
|
17 |
+
2023-04-06 10:46:44,017 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
18 |
+
2023-04-06 10:46:44,167 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.43% [1280 / 52576, 146 ins, 105 del, 1029 sub ]
|
19 |
+
2023-04-06 10:46:44,511 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
20 |
+
2023-04-06 10:46:44,511 INFO [decode.py:608]
|
21 |
+
For test-clean, WER of different settings are:
|
22 |
+
greedy_search 2.43 best for test-clean
|
23 |
+
|
24 |
+
2023-04-06 10:46:47,347 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
|
25 |
+
2023-04-06 10:47:20,989 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.4628, 2.1425, 1.6960, 2.0355, 1.7270, 1.8142, 1.7535, 1.5162],
|
26 |
+
device='cuda:0'), covar=tensor([0.1946, 0.0790, 0.0849, 0.0845, 0.2228, 0.0746, 0.1337, 0.1364],
|
27 |
+
device='cuda:0'), in_proj_covar=tensor([0.0321, 0.0340, 0.0246, 0.0312, 0.0328, 0.0285, 0.0290, 0.0303],
|
28 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
29 |
+
device='cuda:0')
|
30 |
+
2023-04-06 10:47:32,540 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.5169, 1.4365, 0.6674, 1.2004, 1.4270, 1.3728, 1.2824, 1.2656],
|
31 |
+
device='cuda:0'), covar=tensor([0.0450, 0.0286, 0.0379, 0.0536, 0.0204, 0.0468, 0.0452, 0.0543],
|
32 |
+
device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0035, 0.0037],
|
33 |
+
device='cuda:0'), out_proj_covar=tensor([0.0053, 0.0045, 0.0039, 0.0056, 0.0039, 0.0054, 0.0054, 0.0057],
|
34 |
+
device='cuda:0')
|
35 |
+
2023-04-06 10:47:39,863 INFO [decode.py:569] batch 50/?, cuts processed until now is 2840
|
36 |
+
2023-04-06 10:47:44,252 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
37 |
+
2023-04-06 10:47:44,408 INFO [utils.py:558] [test-other-greedy_search] %WER 6.00% [3138 / 52343, 313 ins, 301 del, 2524 sub ]
|
38 |
+
2023-04-06 10:47:44,755 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
39 |
+
2023-04-06 10:47:44,756 INFO [decode.py:608]
|
40 |
+
For test-other, WER of different settings are:
|
41 |
+
greedy_search 6.0 best for test-other
|
42 |
+
|
43 |
+
2023-04-06 10:47:44,756 INFO [decode.py:814] Done!
|
decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-42-45
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-06 10:42:45,288 INFO [decode.py:659] Decoding started
|
2 |
+
2023-04-06 10:42:45,288 INFO [decode.py:665] Device: cuda:0
|
3 |
+
2023-04-06 10:42:45,291 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 64, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-06 10:42:45,292 INFO [decode.py:677] About to create model
|
5 |
+
2023-04-06 10:42:46,106 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-06 10:42:46,126 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
|
7 |
+
2023-04-06 10:42:56,583 INFO [decode.py:782] Number of model parameters: 70369391
|
8 |
+
2023-04-06 10:42:56,583 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-06 10:42:56,586 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-06 10:43:02,305 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-06 10:44:00,603 INFO [decode.py:569] batch 50/?, cuts processed until now is 2526
|
12 |
+
2023-04-06 10:44:05,834 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
13 |
+
2023-04-06 10:44:05,981 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.26% [1190 / 52576, 122 ins, 97 del, 971 sub ]
|
14 |
+
2023-04-06 10:44:06,327 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
15 |
+
2023-04-06 10:44:06,328 INFO [decode.py:608]
|
16 |
+
For test-clean, WER of different settings are:
|
17 |
+
greedy_search 2.26 best for test-clean
|
18 |
+
|
19 |
+
2023-04-06 10:44:09,181 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
|
20 |
+
2023-04-06 10:45:10,920 INFO [decode.py:569] batch 50/?, cuts processed until now is 2840
|
21 |
+
2023-04-06 10:45:17,011 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
22 |
+
2023-04-06 10:45:17,175 INFO [utils.py:558] [test-other-greedy_search] %WER 5.58% [2920 / 52343, 285 ins, 260 del, 2375 sub ]
|
23 |
+
2023-04-06 10:45:17,534 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
24 |
+
2023-04-06 10:45:17,535 INFO [decode.py:608]
|
25 |
+
For test-other, WER of different settings are:
|
26 |
+
greedy_search 5.58 best for test-other
|
27 |
+
|
28 |
+
2023-04-06 10:45:17,535 INFO [decode.py:814] Done!
|
decoding-results/greedy_search/log-decode-epoch-99-avg-1-context-2-max-sym-per-frame-1-2023-04-04-10-36-37
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-04 10:36:37,574 INFO [decode.py:683] Decoding started
|
2 |
+
2023-04-04 10:36:37,574 INFO [decode.py:689] Device: cuda:0
|
3 |
+
2023-04-04 10:36:37,579 INFO [decode.py:699] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '1a059bd-dirty', 'icefall-git-date': 'Mon Apr 3 23:17:14 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-99-avg-1-context-2-max-sym-per-frame-1', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-04 10:36:37,580 INFO [decode.py:701] About to create model
|
5 |
+
2023-04-04 10:36:38,169 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-04 10:36:38,183 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
|
7 |
+
2023-04-04 10:36:40,938 INFO [decode.py:806] Number of model parameters: 70369391
|
8 |
+
2023-04-04 10:36:40,938 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-04 10:36:40,940 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-04 10:36:45,198 INFO [decode.py:586] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-04 10:37:25,210 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.5399, 1.3419, 1.7835, 1.8547, 1.8171, 1.8067, 1.4053, 1.6264],
|
12 |
+
device='cuda:0'), covar=tensor([0.1138, 0.6186, 0.2528, 0.2486, 0.5720, 0.5618, 0.6822, 0.3789],
|
13 |
+
device='cuda:0'), in_proj_covar=tensor([0.0340, 0.0501, 0.0399, 0.0388, 0.0431, 0.0436, 0.0483, 0.0419],
|
14 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002],
|
15 |
+
device='cuda:0')
|
16 |
+
2023-04-04 10:37:34,207 INFO [decode.py:586] batch 50/?, cuts processed until now is 2526
|
17 |
+
2023-04-04 10:37:38,421 INFO [decode.py:602] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
|
18 |
+
2023-04-04 10:37:38,518 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.69% [1414 / 52576, 143 ins, 107 del, 1164 sub ]
|
19 |
+
2023-04-04 10:37:38,718 INFO [decode.py:615] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
|
20 |
+
2023-04-04 10:37:38,719 INFO [decode.py:631]
|
21 |
+
For test-clean, WER of different settings are:
|
22 |
+
greedy_search 2.69 best for test-clean
|
23 |
+
|
24 |
+
2023-04-04 10:37:40,990 INFO [decode.py:586] batch 0/?, cuts processed until now is 30
|
25 |
+
2023-04-04 10:38:09,117 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.6377, 1.5390, 0.6662, 1.2690, 1.5933, 1.4750, 1.3637, 1.3537],
|
26 |
+
device='cuda:0'), covar=tensor([0.0499, 0.0341, 0.0432, 0.0619, 0.0252, 0.0532, 0.0529, 0.0637],
|
27 |
+
device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0034, 0.0036],
|
28 |
+
device='cuda:0'), out_proj_covar=tensor([0.0051, 0.0043, 0.0038, 0.0053, 0.0037, 0.0052, 0.0052, 0.0054],
|
29 |
+
device='cuda:0')
|
30 |
+
2023-04-04 10:38:18,838 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.9599, 2.2519, 0.9427, 1.1409, 1.5647, 1.2337, 2.8050, 1.6180],
|
31 |
+
device='cuda:0'), covar=tensor([0.0496, 0.0360, 0.0586, 0.1042, 0.0491, 0.0775, 0.0378, 0.0566],
|
32 |
+
device='cuda:0'), in_proj_covar=tensor([0.0058, 0.0075, 0.0053, 0.0051, 0.0056, 0.0056, 0.0094, 0.0054],
|
33 |
+
device='cuda:0'), out_proj_covar=tensor([0.0008, 0.0010, 0.0007, 0.0008, 0.0008, 0.0008, 0.0012, 0.0007],
|
34 |
+
device='cuda:0')
|
35 |
+
2023-04-04 10:38:24,826 INFO [decode.py:586] batch 50/?, cuts processed until now is 2840
|
36 |
+
2023-04-04 10:38:25,708 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.0014, 1.1741, 1.8564, 2.1889, 1.8678, 1.7254, 1.6541, 1.7504],
|
37 |
+
device='cuda:0'), covar=tensor([0.2613, 0.7024, 0.3231, 0.5580, 0.4379, 0.6271, 0.6111, 0.6292],
|
38 |
+
device='cuda:0'), in_proj_covar=tensor([0.0507, 0.0581, 0.0659, 0.0635, 0.0561, 0.0612, 0.0649, 0.0635],
|
39 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0002, 0.0001, 0.0001, 0.0002, 0.0002],
|
40 |
+
device='cuda:0')
|
41 |
+
2023-04-04 10:38:28,421 INFO [decode.py:602] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
|
42 |
+
2023-04-04 10:38:28,524 INFO [utils.py:558] [test-other-greedy_search] %WER 6.35% [3323 / 52343, 322 ins, 322 del, 2679 sub ]
|
43 |
+
2023-04-04 10:38:28,727 INFO [decode.py:615] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
|
44 |
+
2023-04-04 10:38:28,727 INFO [decode.py:631]
|
45 |
+
For test-other, WER of different settings are:
|
46 |
+
greedy_search 6.35 best for test-other
|
47 |
+
|
48 |
+
2023-04-04 10:38:28,727 INFO [decode.py:836] Done!
|
decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-10-58-09
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-04 10:58:09,872 INFO [decode.py:650] Decoding started
|
2 |
+
2023-04-04 10:58:09,872 INFO [decode.py:656] Device: cuda:0
|
3 |
+
2023-04-04 10:58:09,874 INFO [decode.py:666] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '1a059bd-dirty', 'icefall-git-date': 'Mon Apr 3 23:17:14 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-04 10:58:09,874 INFO [decode.py:668] About to create model
|
5 |
+
2023-04-04 10:58:10,475 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-04 10:58:10,488 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
|
7 |
+
2023-04-04 10:58:12,820 INFO [decode.py:773] Number of model parameters: 70369391
|
8 |
+
2023-04-04 10:58:12,820 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-04 10:58:12,822 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-04 10:58:17,163 INFO [decode.py:561] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-04 10:59:04,873 INFO [decode.py:561] batch 50/?, cuts processed until now is 2526
|
12 |
+
2023-04-04 10:59:08,082 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.3428, 1.1291, 3.8454, 3.5745, 3.3987, 3.8075, 3.9097, 3.3450],
|
13 |
+
device='cuda:0'), covar=tensor([0.7416, 0.6198, 0.1054, 0.1629, 0.1179, 0.1146, 0.0398, 0.1268],
|
14 |
+
device='cuda:0'), in_proj_covar=tensor([0.0336, 0.0311, 0.0437, 0.0450, 0.0361, 0.0415, 0.0346, 0.0390],
|
15 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0001, 0.0002],
|
16 |
+
device='cuda:0')
|
17 |
+
2023-04-04 10:59:08,817 INFO [decode.py:575] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
18 |
+
2023-04-04 10:59:08,914 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.46% [1292 / 52576, 143 ins, 101 del, 1048 sub ]
|
19 |
+
2023-04-04 10:59:09,114 INFO [decode.py:586] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
20 |
+
2023-04-04 10:59:09,114 INFO [decode.py:600]
|
21 |
+
For test-clean, WER of different settings are:
|
22 |
+
greedy_search 2.46 best for test-clean
|
23 |
+
|
24 |
+
2023-04-04 10:59:11,273 INFO [decode.py:561] batch 0/?, cuts processed until now is 30
|
25 |
+
2023-04-04 10:59:38,454 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.3609, 1.1987, 3.8710, 3.5310, 3.4165, 3.6922, 3.8854, 3.3341],
|
26 |
+
device='cuda:0'), covar=tensor([0.6862, 0.5960, 0.0934, 0.1721, 0.1150, 0.1188, 0.0519, 0.1388],
|
27 |
+
device='cuda:0'), in_proj_covar=tensor([0.0336, 0.0311, 0.0437, 0.0450, 0.0361, 0.0415, 0.0346, 0.0390],
|
28 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0001, 0.0002],
|
29 |
+
device='cuda:0')
|
30 |
+
2023-04-04 10:59:53,538 INFO [decode.py:561] batch 50/?, cuts processed until now is 2840
|
31 |
+
2023-04-04 10:59:57,073 INFO [decode.py:575] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
32 |
+
2023-04-04 10:59:57,175 INFO [utils.py:558] [test-other-greedy_search] %WER 6.16% [3224 / 52343, 322 ins, 303 del, 2599 sub ]
|
33 |
+
2023-04-04 10:59:57,384 INFO [decode.py:586] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
34 |
+
2023-04-04 10:59:57,385 INFO [decode.py:600]
|
35 |
+
For test-other, WER of different settings are:
|
36 |
+
greedy_search 6.16 best for test-other
|
37 |
+
|
38 |
+
2023-04-04 10:59:57,385 INFO [decode.py:805] Done!
|
decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-11-22-52
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-04 11:22:52,235 INFO [decode.py:659] Decoding started
|
2 |
+
2023-04-04 11:22:52,235 INFO [decode.py:665] Device: cuda:0
|
3 |
+
2023-04-04 11:22:52,239 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '0994afb-dirty', 'icefall-git-date': 'Tue Apr 4 10:59:02 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-04-04 11:22:52,239 INFO [decode.py:677] About to create model
|
5 |
+
2023-04-04 11:22:52,830 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-04-04 11:22:52,846 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
|
7 |
+
2023-04-04 11:22:55,051 INFO [decode.py:782] Number of model parameters: 70369391
|
8 |
+
2023-04-04 11:22:55,052 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
9 |
+
2023-04-04 11:22:55,054 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
10 |
+
2023-04-04 11:22:59,267 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
|
11 |
+
2023-04-04 11:23:47,552 INFO [decode.py:569] batch 50/?, cuts processed until now is 2526
|
12 |
+
2023-04-04 11:23:51,606 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
13 |
+
2023-04-04 11:23:51,699 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.46% [1292 / 52576, 148 ins, 99 del, 1045 sub ]
|
14 |
+
2023-04-04 11:23:51,895 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
15 |
+
2023-04-04 11:23:51,896 INFO [decode.py:608]
|
16 |
+
For test-clean, WER of different settings are:
|
17 |
+
greedy_search 2.46 best for test-clean
|
18 |
+
|
19 |
+
2023-04-04 11:23:54,113 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
|
20 |
+
2023-04-04 11:24:01,474 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.1750, 2.5418, 1.0587, 1.2736, 1.7698, 1.3217, 3.1138, 1.7876],
|
21 |
+
device='cuda:0'), covar=tensor([0.0603, 0.0441, 0.0655, 0.1150, 0.0538, 0.0888, 0.0428, 0.0611],
|
22 |
+
device='cuda:0'), in_proj_covar=tensor([0.0058, 0.0075, 0.0053, 0.0051, 0.0056, 0.0056, 0.0094, 0.0054],
|
23 |
+
device='cuda:0'), out_proj_covar=tensor([0.0008, 0.0010, 0.0007, 0.0008, 0.0008, 0.0008, 0.0012, 0.0007],
|
24 |
+
device='cuda:0')
|
25 |
+
2023-04-04 11:24:12,789 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.8796, 1.6856, 1.9582, 2.2762, 2.1299, 1.6889, 1.1918, 1.9793],
|
26 |
+
device='cuda:0'), covar=tensor([0.0562, 0.0823, 0.0437, 0.0278, 0.0337, 0.0568, 0.0736, 0.0329],
|
27 |
+
device='cuda:0'), in_proj_covar=tensor([0.0204, 0.0213, 0.0191, 0.0172, 0.0174, 0.0193, 0.0167, 0.0184],
|
28 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
29 |
+
device='cuda:0')
|
30 |
+
2023-04-04 11:24:38,235 INFO [decode.py:569] batch 50/?, cuts processed until now is 2840
|
31 |
+
2023-04-04 11:24:41,805 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
32 |
+
2023-04-04 11:24:41,911 INFO [utils.py:558] [test-other-greedy_search] %WER 6.18% [3235 / 52343, 335 ins, 303 del, 2597 sub ]
|
33 |
+
2023-04-04 11:24:42,118 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
|
34 |
+
2023-04-04 11:24:42,119 INFO [decode.py:608]
|
35 |
+
For test-other, WER of different settings are:
|
36 |
+
greedy_search 6.18 best for test-other
|
37 |
+
|
38 |
+
2023-04-04 11:24:42,119 INFO [decode.py:814] Done!
|