marcoyang commited on
Commit
1d9bb15
1 Parent(s): d84f6ef

initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. data/lang_bpe_500/HLG.pt +3 -0
  2. data/lang_bpe_500/L.pt +3 -0
  3. data/lang_bpe_500/LG.pt +3 -0
  4. data/lang_bpe_500/Linv.pt +3 -0
  5. data/lang_bpe_500/bpe.model +3 -0
  6. data/lang_bpe_500/tokens.txt +502 -0
  7. data/lang_bpe_500/words.txt +0 -0
  8. decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  9. decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  10. decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
  11. decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
  12. decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  13. decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  14. decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
  15. decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
  16. decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-11-21 +35 -0
  17. decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-07-27 +35 -0
  18. decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-2023-04-04-11-02-26 +30 -0
  19. decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-2023-04-04-12-26-13 +50 -0
  20. decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  21. decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  22. decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
  23. decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
  24. decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  25. decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +0 -0
  26. decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +0 -0
  27. decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +0 -0
  28. decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
  29. decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
  30. decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +2 -0
  31. decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +2 -0
  32. decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
  33. decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt +2 -0
  34. decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt +2 -0
  35. decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt +2 -0
  36. decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  37. decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  38. decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt +0 -0
  39. decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt +0 -0
  40. decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt +0 -0
  41. decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  42. decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  43. decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt +0 -0
  44. decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt +0 -0
  45. decoding-results/greedy_search/errs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt +0 -0
  46. decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-45-22 +43 -0
  47. decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-42-45 +28 -0
  48. decoding-results/greedy_search/log-decode-epoch-99-avg-1-context-2-max-sym-per-frame-1-2023-04-04-10-36-37 +48 -0
  49. decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-10-58-09 +38 -0
  50. decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-11-22-52 +38 -0
data/lang_bpe_500/HLG.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5dbbe8b485c0cb37d11e07e8e734990f1e40a2d00fe9689d8da2e7b6fe72883
3
+ size 845007583
data/lang_bpe_500/L.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1b88996f918737fba67fbd29152018b51a537c16ce0718a2b43d5140583224e
3
+ size 19025703
data/lang_bpe_500/LG.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb9f021c7aad79d45dc275ba8154a430c4f660a319dcb872cd52500f25553d6
3
+ size 249852195
data/lang_bpe_500/Linv.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbc8b3687a1b8f0811a84106b3b310642566c7b1bc282a929878f9269507a2c6
3
+ size 19025703
data/lang_bpe_500/bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
3
+ size 244865
data/lang_bpe_500/tokens.txt ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blk> 0
2
+ <sos/eos> 1
3
+ <unk> 2
4
+ S 3
5
+ ▁THE 4
6
+ ▁A 5
7
+ T 6
8
+ ▁AND 7
9
+ ED 8
10
+ ▁OF 9
11
+ ▁TO 10
12
+ E 11
13
+ D 12
14
+ N 13
15
+ ING 14
16
+ ▁IN 15
17
+ Y 16
18
+ M 17
19
+ C 18
20
+ ▁I 19
21
+ A 20
22
+ P 21
23
+ ▁HE 22
24
+ R 23
25
+ O 24
26
+ L 25
27
+ RE 26
28
+ I 27
29
+ U 28
30
+ ER 29
31
+ ▁IT 30
32
+ LY 31
33
+ ▁THAT 32
34
+ ▁WAS 33
35
+ ▁ 34
36
+ ▁S 35
37
+ AR 36
38
+ ▁BE 37
39
+ F 38
40
+ ▁C 39
41
+ IN 40
42
+ B 41
43
+ ▁FOR 42
44
+ OR 43
45
+ LE 44
46
+ ' 45
47
+ ▁HIS 46
48
+ ▁YOU 47
49
+ AL 48
50
+ ▁RE 49
51
+ V 50
52
+ ▁B 51
53
+ G 52
54
+ RI 53
55
+ ▁E 54
56
+ ▁WITH 55
57
+ ▁T 56
58
+ ▁AS 57
59
+ LL 58
60
+ ▁P 59
61
+ ▁HER 60
62
+ ST 61
63
+ ▁HAD 62
64
+ ▁SO 63
65
+ ▁F 64
66
+ W 65
67
+ CE 66
68
+ ▁IS 67
69
+ ND 68
70
+ ▁NOT 69
71
+ TH 70
72
+ ▁BUT 71
73
+ EN 72
74
+ ▁SHE 73
75
+ ▁ON 74
76
+ VE 75
77
+ ON 76
78
+ SE 77
79
+ ▁DE 78
80
+ UR 79
81
+ ▁G 80
82
+ CH 81
83
+ K 82
84
+ TER 83
85
+ ▁AT 84
86
+ IT 85
87
+ ▁ME 86
88
+ RO 87
89
+ NE 88
90
+ RA 89
91
+ ES 90
92
+ IL 91
93
+ NG 92
94
+ IC 93
95
+ ▁NO 94
96
+ ▁HIM 95
97
+ ENT 96
98
+ IR 97
99
+ ▁WE 98
100
+ H 99
101
+ ▁DO 100
102
+ ▁ALL 101
103
+ ▁HAVE 102
104
+ LO 103
105
+ ▁BY 104
106
+ ▁MY 105
107
+ ▁MO 106
108
+ ▁THIS 107
109
+ LA 108
110
+ ▁ST 109
111
+ ▁WHICH 110
112
+ ▁CON 111
113
+ ▁THEY 112
114
+ CK 113
115
+ TE 114
116
+ ▁SAID 115
117
+ ▁FROM 116
118
+ ▁GO 117
119
+ ▁WHO 118
120
+ ▁TH 119
121
+ ▁OR 120
122
+ ▁D 121
123
+ ▁W 122
124
+ VER 123
125
+ LI 124
126
+ ▁SE 125
127
+ ▁ONE 126
128
+ ▁CA 127
129
+ ▁AN 128
130
+ ▁LA 129
131
+ ▁WERE 130
132
+ EL 131
133
+ ▁HA 132
134
+ ▁MAN 133
135
+ ▁FA 134
136
+ ▁EX 135
137
+ AD 136
138
+ ▁SU 137
139
+ RY 138
140
+ ▁MI 139
141
+ AT 140
142
+ ▁BO 141
143
+ ▁WHEN 142
144
+ AN 143
145
+ THER 144
146
+ PP 145
147
+ ATION 146
148
+ ▁FI 147
149
+ ▁WOULD 148
150
+ ▁PRO 149
151
+ OW 150
152
+ ET 151
153
+ ▁O 152
154
+ ▁THERE 153
155
+ ▁HO 154
156
+ ION 155
157
+ ▁WHAT 156
158
+ ▁FE 157
159
+ ▁PA 158
160
+ US 159
161
+ MENT 160
162
+ ▁MA 161
163
+ UT 162
164
+ ▁OUT 163
165
+ ▁THEIR 164
166
+ ▁IF 165
167
+ ▁LI 166
168
+ ▁K 167
169
+ ▁WILL 168
170
+ ▁ARE 169
171
+ ID 170
172
+ ▁RO 171
173
+ DE 172
174
+ TION 173
175
+ ▁WA 174
176
+ PE 175
177
+ ▁UP 176
178
+ ▁SP 177
179
+ ▁PO 178
180
+ IGHT 179
181
+ ▁UN 180
182
+ RU 181
183
+ ▁LO 182
184
+ AS 183
185
+ OL 184
186
+ ▁LE 185
187
+ ▁BEEN 186
188
+ ▁SH 187
189
+ ▁RA 188
190
+ ▁SEE 189
191
+ KE 190
192
+ UL 191
193
+ TED 192
194
+ ▁SA 193
195
+ UN 194
196
+ UND 195
197
+ ANT 196
198
+ ▁NE 197
199
+ IS 198
200
+ ▁THEM 199
201
+ CI 200
202
+ GE 201
203
+ ▁COULD 202
204
+ ▁DIS 203
205
+ OM 204
206
+ ISH 205
207
+ HE 206
208
+ EST 207
209
+ ▁SOME 208
210
+ ENCE 209
211
+ ITY 210
212
+ IVE 211
213
+ ▁US 212
214
+ ▁MORE 213
215
+ ▁EN 214
216
+ ARD 215
217
+ ATE 216
218
+ ▁YOUR 217
219
+ ▁INTO 218
220
+ ▁KNOW 219
221
+ ▁CO 220
222
+ ANCE 221
223
+ ▁TIME 222
224
+ ▁WI 223
225
+ ▁YE 224
226
+ AGE 225
227
+ ▁NOW 226
228
+ TI 227
229
+ FF 228
230
+ ABLE 229
231
+ ▁VERY 230
232
+ ▁LIKE 231
233
+ AM 232
234
+ HI 233
235
+ Z 234
236
+ ▁OTHER 235
237
+ ▁THAN 236
238
+ ▁LITTLE 237
239
+ ▁DID 238
240
+ ▁LOOK 239
241
+ TY 240
242
+ ERS 241
243
+ ▁CAN 242
244
+ ▁CHA 243
245
+ ▁AR 244
246
+ X 245
247
+ FUL 246
248
+ UGH 247
249
+ ▁BA 248
250
+ ▁DAY 249
251
+ ▁ABOUT 250
252
+ TEN 251
253
+ IM 252
254
+ ▁ANY 253
255
+ ▁PRE 254
256
+ ▁OVER 255
257
+ IES 256
258
+ NESS 257
259
+ ME 258
260
+ BLE 259
261
+ ▁M 260
262
+ ROW 261
263
+ ▁HAS 262
264
+ ▁GREAT 263
265
+ ▁VI 264
266
+ TA 265
267
+ ▁AFTER 266
268
+ PER 267
269
+ ▁AGAIN 268
270
+ HO 269
271
+ SH 270
272
+ ▁UPON 271
273
+ ▁DI 272
274
+ ▁HAND 273
275
+ ▁COM 274
276
+ IST 275
277
+ TURE 276
278
+ ▁STA 277
279
+ ▁THEN 278
280
+ ▁SHOULD 279
281
+ ▁GA 280
282
+ OUS 281
283
+ OUR 282
284
+ ▁WELL 283
285
+ ▁ONLY 284
286
+ MAN 285
287
+ ▁GOOD 286
288
+ ▁TWO 287
289
+ ▁MAR 288
290
+ ▁SAY 289
291
+ ▁HU 290
292
+ TING 291
293
+ ▁OUR 292
294
+ RESS 293
295
+ ▁DOWN 294
296
+ IOUS 295
297
+ ▁BEFORE 296
298
+ ▁DA 297
299
+ ▁NA 298
300
+ QUI 299
301
+ ▁MADE 300
302
+ ▁EVERY 301
303
+ ▁OLD 302
304
+ ▁EVEN 303
305
+ IG 304
306
+ ▁COME 305
307
+ ▁GRA 306
308
+ ▁RI 307
309
+ ▁LONG 308
310
+ OT 309
311
+ SIDE 310
312
+ WARD 311
313
+ ▁FO 312
314
+ ▁WHERE 313
315
+ MO 314
316
+ LESS 315
317
+ ▁SC 316
318
+ ▁MUST 317
319
+ ▁NEVER 318
320
+ ▁HOW 319
321
+ ▁CAME 320
322
+ ▁SUCH 321
323
+ ▁RU 322
324
+ ▁TAKE 323
325
+ ▁WO 324
326
+ ▁CAR 325
327
+ UM 326
328
+ AK 327
329
+ ▁THINK 328
330
+ ▁MUCH 329
331
+ ▁MISTER 330
332
+ ▁MAY 331
333
+ ▁JO 332
334
+ ▁WAY 333
335
+ ▁COMP 334
336
+ ▁THOUGHT 335
337
+ ▁STO 336
338
+ ▁MEN 337
339
+ ▁BACK 338
340
+ ▁DON 339
341
+ J 340
342
+ ▁LET 341
343
+ ▁TRA 342
344
+ ▁FIRST 343
345
+ ▁JUST 344
346
+ ▁VA 345
347
+ ▁OWN 346
348
+ ▁PLA 347
349
+ ▁MAKE 348
350
+ ATED 349
351
+ ▁HIMSELF 350
352
+ ▁WENT 351
353
+ ▁PI 352
354
+ GG 353
355
+ RING 354
356
+ ▁DU 355
357
+ ▁MIGHT 356
358
+ ▁PART 357
359
+ ▁GIVE 358
360
+ ▁IMP 359
361
+ ▁BU 360
362
+ ▁PER 361
363
+ ▁PLACE 362
364
+ ▁HOUSE 363
365
+ ▁THROUGH 364
366
+ IAN 365
367
+ ▁SW 366
368
+ ▁UNDER 367
369
+ QUE 368
370
+ ▁AWAY 369
371
+ ▁LOVE 370
372
+ QUA 371
373
+ ▁LIFE 372
374
+ ▁GET 373
375
+ ▁WITHOUT 374
376
+ ▁PASS 375
377
+ ▁TURN 376
378
+ IGN 377
379
+ ▁HEAD 378
380
+ ▁MOST 379
381
+ ▁THOSE 380
382
+ ▁SHALL 381
383
+ ▁EYES 382
384
+ ▁COL 383
385
+ ▁STILL 384
386
+ ▁NIGHT 385
387
+ ▁NOTHING 386
388
+ ITION 387
389
+ HA 388
390
+ ▁TELL 389
391
+ ▁WORK 390
392
+ ▁LAST 391
393
+ ▁NEW 392
394
+ ▁FACE 393
395
+ ▁HI 394
396
+ ▁WORD 395
397
+ ▁FOUND 396
398
+ ▁COUNT 397
399
+ ▁OB 398
400
+ ▁WHILE 399
401
+ ▁SHA 400
402
+ ▁MEAN 401
403
+ ▁SAW 402
404
+ ▁PEOPLE 403
405
+ ▁FRIEND 404
406
+ ▁THREE 405
407
+ ▁ROOM 406
408
+ ▁SAME 407
409
+ ▁THOUGH 408
410
+ ▁RIGHT 409
411
+ ▁CHILD 410
412
+ ▁FATHER 411
413
+ ▁ANOTHER 412
414
+ ▁HEART 413
415
+ ▁WANT 414
416
+ ▁TOOK 415
417
+ OOK 416
418
+ ▁LIGHT 417
419
+ ▁MISSUS 418
420
+ ▁OPEN 419
421
+ ▁JU 420
422
+ ▁ASKED 421
423
+ PORT 422
424
+ ▁LEFT 423
425
+ ▁JA 424
426
+ ▁WORLD 425
427
+ ▁HOME 426
428
+ ▁WHY 427
429
+ ▁ALWAYS 428
430
+ ▁ANSWER 429
431
+ ▁SEEMED 430
432
+ ▁SOMETHING 431
433
+ ▁GIRL 432
434
+ ▁BECAUSE 433
435
+ ▁NAME 434
436
+ ▁TOLD 435
437
+ ▁NI 436
438
+ ▁HIGH 437
439
+ IZE 438
440
+ ▁WOMAN 439
441
+ ▁FOLLOW 440
442
+ ▁RETURN 441
443
+ ▁KNEW 442
444
+ ▁EACH 443
445
+ ▁KIND 444
446
+ ▁JE 445
447
+ ▁ACT 446
448
+ ▁LU 447
449
+ ▁CERTAIN 448
450
+ ▁YEARS 449
451
+ ▁QUITE 450
452
+ ▁APPEAR 451
453
+ ▁BETTER 452
454
+ ▁HALF 453
455
+ ▁PRESENT 454
456
+ ▁PRINCE 455
457
+ SHIP 456
458
+ ▁ALSO 457
459
+ ▁BEGAN 458
460
+ ▁HAVING 459
461
+ ▁ENOUGH 460
462
+ ▁PERSON 461
463
+ ▁LADY 462
464
+ ▁WHITE 463
465
+ ▁COURSE 464
466
+ ▁VOICE 465
467
+ ▁SPEAK 466
468
+ ▁POWER 467
469
+ ▁MORNING 468
470
+ ▁BETWEEN 469
471
+ ▁AMONG 470
472
+ ▁KEEP 471
473
+ ▁WALK 472
474
+ ▁MATTER 473
475
+ ▁TEA 474
476
+ ▁BELIEVE 475
477
+ ▁SMALL 476
478
+ ▁TALK 477
479
+ ▁FELT 478
480
+ ▁HORSE 479
481
+ ▁MYSELF 480
482
+ ▁SIX 481
483
+ ▁HOWEVER 482
484
+ ▁FULL 483
485
+ ▁HERSELF 484
486
+ ▁POINT 485
487
+ ▁STOOD 486
488
+ ▁HUNDRED 487
489
+ ▁ALMOST 488
490
+ ▁SINCE 489
491
+ ▁LARGE 490
492
+ ▁LEAVE 491
493
+ ▁PERHAPS 492
494
+ ▁DARK 493
495
+ ▁SUDDEN 494
496
+ ▁REPLIED 495
497
+ ▁ANYTHING 496
498
+ ▁WONDER 497
499
+ ▁UNTIL 498
500
+ Q 499
501
+ #0 500
502
+ #1 501
data/lang_bpe_500/words.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-11-21 ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-06 13:11:21,982 INFO [decode.py:659] Decoding started
2
+ 2023-04-06 13:11:21,982 INFO [decode.py:665] Device: cuda:0
3
+ 2023-04-06 13:11:21,985 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-06 13:11:21,986 INFO [decode.py:677] About to create model
5
+ 2023-04-06 13:11:22,808 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-06 13:11:22,828 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
7
+ 2023-04-06 13:11:28,037 INFO [decode.py:782] Number of model parameters: 70369391
8
+ 2023-04-06 13:11:28,038 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-06 13:11:28,040 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-06 13:11:35,436 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
11
+ 2023-04-06 13:12:19,715 INFO [decode.py:569] batch 20/?, cuts processed until now is 1545
12
+ 2023-04-06 13:12:56,621 INFO [decode.py:569] batch 40/?, cuts processed until now is 2375
13
+ 2023-04-06 13:13:27,169 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
14
+ 2023-04-06 13:13:27,321 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.43% [1277 / 52576, 147 ins, 97 del, 1033 sub ]
15
+ 2023-04-06 13:13:27,669 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
16
+ 2023-04-06 13:13:27,670 INFO [decode.py:608]
17
+ For test-clean, WER of different settings are:
18
+ beam_20.0_max_contexts_8_max_states_64 2.43 best for test-clean
19
+
20
+ 2023-04-06 13:13:31,899 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
21
+ 2023-04-06 13:14:12,501 INFO [decode.py:569] batch 20/?, cuts processed until now is 1771
22
+ 2023-04-06 13:14:45,255 INFO [decode.py:569] batch 40/?, cuts processed until now is 2696
23
+ 2023-04-06 13:15:02,874 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.7310, 1.5854, 0.8361, 1.3923, 1.6120, 1.5549, 1.4788, 1.4736],
24
+ device='cuda:0'), covar=tensor([0.0463, 0.0283, 0.0402, 0.0525, 0.0249, 0.0464, 0.0430, 0.0527],
25
+ device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0035, 0.0037],
26
+ device='cuda:0'), out_proj_covar=tensor([0.0053, 0.0045, 0.0039, 0.0056, 0.0039, 0.0054, 0.0054, 0.0057],
27
+ device='cuda:0')
28
+ 2023-04-06 13:15:12,927 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
29
+ 2023-04-06 13:15:13,083 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 5.99% [3136 / 52343, 326 ins, 311 del, 2499 sub ]
30
+ 2023-04-06 13:15:13,436 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
31
+ 2023-04-06 13:15:13,437 INFO [decode.py:608]
32
+ For test-other, WER of different settings are:
33
+ beam_20.0_max_contexts_8_max_states_64 5.99 best for test-other
34
+
35
+ 2023-04-06 13:15:13,437 INFO [decode.py:814] Done!
decoding-results/fast_beam_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model-2023-04-06-13-07-27 ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-06 13:07:27,764 INFO [decode.py:659] Decoding started
2
+ 2023-04-06 13:07:27,764 INFO [decode.py:665] Device: cuda:0
3
+ 2023-04-06 13:07:27,768 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 64, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-06 13:07:27,768 INFO [decode.py:677] About to create model
5
+ 2023-04-06 13:07:28,588 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-06 13:07:28,608 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
7
+ 2023-04-06 13:07:33,838 INFO [decode.py:782] Number of model parameters: 70369391
8
+ 2023-04-06 13:07:33,838 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-06 13:07:33,841 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-06 13:07:40,955 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
11
+ 2023-04-06 13:08:05,123 INFO [zipformer.py:2441] attn_weights_entropy = tensor([3.8971, 3.9030, 2.9892, 4.4202, 3.9925, 3.8669, 1.8646, 3.8496],
12
+ device='cuda:0'), covar=tensor([0.1528, 0.0781, 0.3562, 0.0964, 0.2049, 0.2446, 0.6687, 0.2063],
13
+ device='cuda:0'), in_proj_covar=tensor([0.0265, 0.0238, 0.0290, 0.0333, 0.0331, 0.0273, 0.0293, 0.0287],
14
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
15
+ device='cuda:0')
16
+ 2023-04-06 13:08:24,743 INFO [decode.py:569] batch 20/?, cuts processed until now is 1545
17
+ 2023-04-06 13:09:01,013 INFO [decode.py:569] batch 40/?, cuts processed until now is 2375
18
+ 2023-04-06 13:09:31,347 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
19
+ 2023-04-06 13:09:31,497 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.27% [1196 / 52576, 129 ins, 100 del, 967 sub ]
20
+ 2023-04-06 13:09:31,841 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
21
+ 2023-04-06 13:09:31,842 INFO [decode.py:608]
22
+ For test-clean, WER of different settings are:
23
+ beam_20.0_max_contexts_8_max_states_64 2.27 best for test-clean
24
+
25
+ 2023-04-06 13:09:36,034 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
26
+ 2023-04-06 13:10:16,221 INFO [decode.py:569] batch 20/?, cuts processed until now is 1771
27
+ 2023-04-06 13:10:49,392 INFO [decode.py:569] batch 40/?, cuts processed until now is 2696
28
+ 2023-04-06 13:11:16,867 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
29
+ 2023-04-06 13:11:17,025 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 5.54% [2900 / 52343, 305 ins, 250 del, 2345 sub ]
30
+ 2023-04-06 13:11:17,379 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt
31
+ 2023-04-06 13:11:17,380 INFO [decode.py:608]
32
+ For test-other, WER of different settings are:
33
+ beam_20.0_max_contexts_8_max_states_64 5.54 best for test-other
34
+
35
+ 2023-04-06 13:11:17,380 INFO [decode.py:814] Done!
decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-2023-04-04-11-02-26 ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-04 11:02:26,737 INFO [decode.py:651] Decoding started
2
+ 2023-04-04 11:02:26,737 INFO [decode.py:657] Device: cuda:0
3
+ 2023-04-04 11:02:26,740 INFO [decode.py:667] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '0994afb-dirty', 'icefall-git-date': 'Tue Apr 4 10:59:02 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-04 11:02:26,740 INFO [decode.py:669] About to create model
5
+ 2023-04-04 11:02:27,365 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-04 11:02:27,378 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
7
+ 2023-04-04 11:02:29,736 INFO [decode.py:774] Number of model parameters: 70369391
8
+ 2023-04-04 11:02:29,736 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-04 11:02:29,738 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-04 11:02:37,465 INFO [decode.py:562] batch 0/?, cuts processed until now is 26
11
+ 2023-04-04 11:03:33,946 INFO [decode.py:562] batch 20/?, cuts processed until now is 1545
12
+ 2023-04-04 11:04:22,204 INFO [decode.py:562] batch 40/?, cuts processed until now is 2375
13
+ 2023-04-04 11:05:08,814 INFO [decode.py:576] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
14
+ 2023-04-04 11:05:08,911 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.47% [1298 / 52576, 160 ins, 96 del, 1042 sub ]
15
+ 2023-04-04 11:05:09,110 INFO [decode.py:587] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
16
+ 2023-04-04 11:05:09,111 INFO [decode.py:601]
17
+ For test-clean, WER of different settings are:
18
+ beam_20.0_max_contexts_8_max_states_64 2.47 best for test-clean
19
+
20
+ 2023-04-04 11:05:15,419 INFO [decode.py:562] batch 0/?, cuts processed until now is 30
21
+ 2023-04-04 11:06:16,018 INFO [decode.py:562] batch 20/?, cuts processed until now is 1771
22
+ 2023-04-04 11:06:47,363 INFO [decode.py:562] batch 40/?, cuts processed until now is 2696
23
+ 2023-04-04 11:07:09,305 INFO [decode.py:576] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
24
+ 2023-04-04 11:07:09,398 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 6.11% [3200 / 52343, 352 ins, 290 del, 2558 sub ]
25
+ 2023-04-04 11:07:09,598 INFO [decode.py:587] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt
26
+ 2023-04-04 11:07:09,599 INFO [decode.py:601]
27
+ For test-other, WER of different settings are:
28
+ beam_20.0_max_contexts_8_max_states_64 6.11 best for test-other
29
+
30
+ 2023-04-04 11:07:09,599 INFO [decode.py:806] Done!
decoding-results/fast_beam_search/log-decode-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-2023-04-04-12-26-13 ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-04 12:26:13,984 INFO [decode.py:659] Decoding started
2
+ 2023-04-04 12:26:13,984 INFO [decode.py:665] Device: cuda:0
3
+ 2023-04-04 12:26:13,992 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '475430b-dirty', 'icefall-git-date': 'Tue Apr 4 11:28:58 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'fast_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 64, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-04 12:26:13,992 INFO [decode.py:677] About to create model
5
+ 2023-04-04 12:26:14,594 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-04 12:26:14,607 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
7
+ 2023-04-04 12:26:16,838 INFO [decode.py:782] Number of model parameters: 70369391
8
+ 2023-04-04 12:26:16,838 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-04 12:26:16,841 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-04 12:26:22,248 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
11
+ 2023-04-04 12:26:37,082 INFO [zipformer.py:2401] attn_weights_entropy = tensor([3.9816, 3.9442, 2.9777, 4.5003, 4.1074, 3.9360, 1.7938, 3.8771],
12
+ device='cuda:0'), covar=tensor([0.1328, 0.0678, 0.3053, 0.0896, 0.1707, 0.1995, 0.6684, 0.2012],
13
+ device='cuda:0'), in_proj_covar=tensor([0.0258, 0.0230, 0.0281, 0.0324, 0.0320, 0.0267, 0.0288, 0.0280],
14
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
15
+ device='cuda:0')
16
+ 2023-04-04 12:26:59,982 INFO [decode.py:569] batch 20/?, cuts processed until now is 1545
17
+ 2023-04-04 12:27:01,565 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.6970, 1.9492, 0.9371, 1.3477, 2.0484, 1.5397, 1.4495, 1.4722],
18
+ device='cuda:0'), covar=tensor([0.0490, 0.0291, 0.0386, 0.0581, 0.0219, 0.0526, 0.0508, 0.0593],
19
+ device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0034, 0.0036],
20
+ device='cuda:0'), out_proj_covar=tensor([0.0051, 0.0043, 0.0038, 0.0053, 0.0037, 0.0052, 0.0052, 0.0054],
21
+ device='cuda:0')
22
+ 2023-04-04 12:27:19,645 INFO [zipformer.py:2401] attn_weights_entropy = tensor([4.0814, 4.0133, 2.9767, 4.5842, 4.2312, 4.0406, 1.7885, 3.9094],
23
+ device='cuda:0'), covar=tensor([0.1133, 0.0571, 0.2740, 0.0753, 0.1763, 0.1667, 0.6636, 0.1986],
24
+ device='cuda:0'), in_proj_covar=tensor([0.0258, 0.0230, 0.0281, 0.0324, 0.0320, 0.0267, 0.0288, 0.0280],
25
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
26
+ device='cuda:0')
27
+ 2023-04-04 12:27:30,069 INFO [decode.py:569] batch 40/?, cuts processed until now is 2375
28
+ 2023-04-04 12:27:54,759 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
29
+ 2023-04-04 12:27:54,855 INFO [utils.py:558] [test-clean-beam_20.0_max_contexts_8_max_states_64] %WER 2.34% [1231 / 52576, 142 ins, 99 del, 990 sub ]
30
+ 2023-04-04 12:27:55,057 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
31
+ 2023-04-04 12:27:55,057 INFO [decode.py:608]
32
+ For test-clean, WER of different settings are:
33
+ beam_20.0_max_contexts_8_max_states_64 2.34 best for test-clean
34
+
35
+ 2023-04-04 12:27:58,391 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
36
+ 2023-04-04 12:28:33,992 INFO [decode.py:569] batch 20/?, cuts processed until now is 1771
37
+ 2023-04-04 12:28:51,985 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.2778, 2.1054, 2.4532, 2.7704, 2.6064, 2.0049, 1.4088, 2.3488],
38
+ device='cuda:0'), covar=tensor([0.0651, 0.0710, 0.0442, 0.0255, 0.0299, 0.0649, 0.0782, 0.0321],
39
+ device='cuda:0'), in_proj_covar=tensor([0.0204, 0.0213, 0.0191, 0.0172, 0.0174, 0.0193, 0.0167, 0.0184],
40
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
41
+ device='cuda:0')
42
+ 2023-04-04 12:29:01,114 INFO [decode.py:569] batch 40/?, cuts processed until now is 2696
43
+ 2023-04-04 12:29:23,342 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
44
+ 2023-04-04 12:29:23,443 INFO [utils.py:558] [test-other-beam_20.0_max_contexts_8_max_states_64] %WER 5.67% [2970 / 52343, 310 ins, 273 del, 2387 sub ]
45
+ 2023-04-04 12:29:23,648 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/fast_beam_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt
46
+ 2023-04-04 12:29:23,649 INFO [decode.py:608]
47
+ For test-other, WER of different settings are:
48
+ beam_20.0_max_contexts_8_max_states_64 5.67 best for test-other
49
+
50
+ 2023-04-04 12:29:23,649 INFO [decode.py:814] Done!
decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 2.43
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 2.27
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 2.47
decoding-results/fast_beam_search/wer-summary-test-clean-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 2.34
decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 5.99
decoding-results/fast_beam_search/wer-summary-test-other-epoch-20-avg-4-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 5.54
decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-32-beam-20.0-max-contexts-8-max-states-64.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 6.11
decoding-results/fast_beam_search/wer-summary-test-other-epoch-99-avg-1-streaming-chunk-size-64-beam-20.0-max-contexts-8-max-states-64-right-padding-64.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ beam_20.0_max_contexts_8_max_states_64 5.67
decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-64-context-2-max-sym-per-frame-1.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-45-22 ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-06 10:45:22,213 INFO [decode.py:659] Decoding started
2
+ 2023-04-06 10:45:22,213 INFO [decode.py:665] Device: cuda:0
3
+ 2023-04-06 10:45:22,217 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-06 10:45:22,217 INFO [decode.py:677] About to create model
5
+ 2023-04-06 10:45:23,051 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-06 10:45:23,071 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
7
+ 2023-04-06 10:45:28,421 INFO [decode.py:782] Number of model parameters: 70369391
8
+ 2023-04-06 10:45:28,421 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-06 10:45:28,424 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-06 10:45:34,938 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
11
+ 2023-04-06 10:46:11,317 INFO [zipformer.py:2441] attn_weights_entropy = tensor([0.6097, 1.6395, 1.8269, 1.2424, 1.8390, 1.4426, 2.2329, 1.6805],
12
+ device='cuda:0'), covar=tensor([0.4370, 0.1894, 0.5571, 0.3727, 0.1697, 0.2827, 0.1812, 0.4848],
13
+ device='cuda:0'), in_proj_covar=tensor([0.0381, 0.0394, 0.0474, 0.0408, 0.0456, 0.0428, 0.0445, 0.0457],
14
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
15
+ device='cuda:0')
16
+ 2023-04-06 10:46:38,790 INFO [decode.py:569] batch 50/?, cuts processed until now is 2526
17
+ 2023-04-06 10:46:44,017 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
18
+ 2023-04-06 10:46:44,167 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.43% [1280 / 52576, 146 ins, 105 del, 1029 sub ]
19
+ 2023-04-06 10:46:44,511 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
20
+ 2023-04-06 10:46:44,511 INFO [decode.py:608]
21
+ For test-clean, WER of different settings are:
22
+ greedy_search 2.43 best for test-clean
23
+
24
+ 2023-04-06 10:46:47,347 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
25
+ 2023-04-06 10:47:20,989 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.4628, 2.1425, 1.6960, 2.0355, 1.7270, 1.8142, 1.7535, 1.5162],
26
+ device='cuda:0'), covar=tensor([0.1946, 0.0790, 0.0849, 0.0845, 0.2228, 0.0746, 0.1337, 0.1364],
27
+ device='cuda:0'), in_proj_covar=tensor([0.0321, 0.0340, 0.0246, 0.0312, 0.0328, 0.0285, 0.0290, 0.0303],
28
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
29
+ device='cuda:0')
30
+ 2023-04-06 10:47:32,540 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.5169, 1.4365, 0.6674, 1.2004, 1.4270, 1.3728, 1.2824, 1.2656],
31
+ device='cuda:0'), covar=tensor([0.0450, 0.0286, 0.0379, 0.0536, 0.0204, 0.0468, 0.0452, 0.0543],
32
+ device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0035, 0.0037],
33
+ device='cuda:0'), out_proj_covar=tensor([0.0053, 0.0045, 0.0039, 0.0056, 0.0039, 0.0054, 0.0054, 0.0057],
34
+ device='cuda:0')
35
+ 2023-04-06 10:47:39,863 INFO [decode.py:569] batch 50/?, cuts processed until now is 2840
36
+ 2023-04-06 10:47:44,252 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
37
+ 2023-04-06 10:47:44,408 INFO [utils.py:558] [test-other-greedy_search] %WER 6.00% [3138 / 52343, 313 ins, 301 del, 2524 sub ]
38
+ 2023-04-06 10:47:44,755 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-32-context-2-max-sym-per-frame-1-use-averaged-model.txt
39
+ 2023-04-06 10:47:44,756 INFO [decode.py:608]
40
+ For test-other, WER of different settings are:
41
+ greedy_search 6.0 best for test-other
42
+
43
+ 2023-04-06 10:47:44,756 INFO [decode.py:814] Done!
decoding-results/greedy_search/log-decode-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model-2023-04-06-10-42-45 ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-06 10:42:45,288 INFO [decode.py:659] Decoding started
2
+ 2023-04-06 10:42:45,288 INFO [decode.py:665] Device: cuda:0
3
+ 2023-04-06 10:42:45,291 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'b52e7ae-dirty', 'icefall-git-date': 'Tue Apr 4 14:07:45 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-6-1219221738-65dd59bbf8-2ghmr', 'IP address': '10.177.28.85'}, 'epoch': 20, 'iter': 0, 'avg': 4, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 64, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-06 10:42:45,292 INFO [decode.py:677] About to create model
5
+ 2023-04-06 10:42:46,106 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-06 10:42:46,126 INFO [decode.py:748] Calculating the averaged model over epoch range from 16 (excluded) to 20
7
+ 2023-04-06 10:42:56,583 INFO [decode.py:782] Number of model parameters: 70369391
8
+ 2023-04-06 10:42:56,583 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-06 10:42:56,586 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-06 10:43:02,305 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
11
+ 2023-04-06 10:44:00,603 INFO [decode.py:569] batch 50/?, cuts processed until now is 2526
12
+ 2023-04-06 10:44:05,834 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
13
+ 2023-04-06 10:44:05,981 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.26% [1190 / 52576, 122 ins, 97 del, 971 sub ]
14
+ 2023-04-06 10:44:06,327 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
15
+ 2023-04-06 10:44:06,328 INFO [decode.py:608]
16
+ For test-clean, WER of different settings are:
17
+ greedy_search 2.26 best for test-clean
18
+
19
+ 2023-04-06 10:44:09,181 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
20
+ 2023-04-06 10:45:10,920 INFO [decode.py:569] batch 50/?, cuts processed until now is 2840
21
+ 2023-04-06 10:45:17,011 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
22
+ 2023-04-06 10:45:17,175 INFO [utils.py:558] [test-other-greedy_search] %WER 5.58% [2920 / 52343, 285 ins, 260 del, 2375 sub ]
23
+ 2023-04-06 10:45:17,534 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-20-avg-4-streaming-chunk-size-64-context-2-max-sym-per-frame-1-use-averaged-model.txt
24
+ 2023-04-06 10:45:17,535 INFO [decode.py:608]
25
+ For test-other, WER of different settings are:
26
+ greedy_search 5.58 best for test-other
27
+
28
+ 2023-04-06 10:45:17,535 INFO [decode.py:814] Done!
decoding-results/greedy_search/log-decode-epoch-99-avg-1-context-2-max-sym-per-frame-1-2023-04-04-10-36-37 ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-04 10:36:37,574 INFO [decode.py:683] Decoding started
2
+ 2023-04-04 10:36:37,574 INFO [decode.py:689] Device: cuda:0
3
+ 2023-04-04 10:36:37,579 INFO [decode.py:699] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '1a059bd-dirty', 'icefall-git-date': 'Mon Apr 3 23:17:14 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-99-avg-1-context-2-max-sym-per-frame-1', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-04 10:36:37,580 INFO [decode.py:701] About to create model
5
+ 2023-04-04 10:36:38,169 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-04 10:36:38,183 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
7
+ 2023-04-04 10:36:40,938 INFO [decode.py:806] Number of model parameters: 70369391
8
+ 2023-04-04 10:36:40,938 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-04 10:36:40,940 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-04 10:36:45,198 INFO [decode.py:586] batch 0/?, cuts processed until now is 26
11
+ 2023-04-04 10:37:25,210 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.5399, 1.3419, 1.7835, 1.8547, 1.8171, 1.8067, 1.4053, 1.6264],
12
+ device='cuda:0'), covar=tensor([0.1138, 0.6186, 0.2528, 0.2486, 0.5720, 0.5618, 0.6822, 0.3789],
13
+ device='cuda:0'), in_proj_covar=tensor([0.0340, 0.0501, 0.0399, 0.0388, 0.0431, 0.0436, 0.0483, 0.0419],
14
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002],
15
+ device='cuda:0')
16
+ 2023-04-04 10:37:34,207 INFO [decode.py:586] batch 50/?, cuts processed until now is 2526
17
+ 2023-04-04 10:37:38,421 INFO [decode.py:602] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
18
+ 2023-04-04 10:37:38,518 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.69% [1414 / 52576, 143 ins, 107 del, 1164 sub ]
19
+ 2023-04-04 10:37:38,718 INFO [decode.py:615] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
20
+ 2023-04-04 10:37:38,719 INFO [decode.py:631]
21
+ For test-clean, WER of different settings are:
22
+ greedy_search 2.69 best for test-clean
23
+
24
+ 2023-04-04 10:37:40,990 INFO [decode.py:586] batch 0/?, cuts processed until now is 30
25
+ 2023-04-04 10:38:09,117 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.6377, 1.5390, 0.6662, 1.2690, 1.5933, 1.4750, 1.3637, 1.3537],
26
+ device='cuda:0'), covar=tensor([0.0499, 0.0341, 0.0432, 0.0619, 0.0252, 0.0532, 0.0529, 0.0637],
27
+ device='cuda:0'), in_proj_covar=tensor([0.0035, 0.0028, 0.0026, 0.0035, 0.0023, 0.0035, 0.0034, 0.0036],
28
+ device='cuda:0'), out_proj_covar=tensor([0.0051, 0.0043, 0.0038, 0.0053, 0.0037, 0.0052, 0.0052, 0.0054],
29
+ device='cuda:0')
30
+ 2023-04-04 10:38:18,838 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.9599, 2.2519, 0.9427, 1.1409, 1.5647, 1.2337, 2.8050, 1.6180],
31
+ device='cuda:0'), covar=tensor([0.0496, 0.0360, 0.0586, 0.1042, 0.0491, 0.0775, 0.0378, 0.0566],
32
+ device='cuda:0'), in_proj_covar=tensor([0.0058, 0.0075, 0.0053, 0.0051, 0.0056, 0.0056, 0.0094, 0.0054],
33
+ device='cuda:0'), out_proj_covar=tensor([0.0008, 0.0010, 0.0007, 0.0008, 0.0008, 0.0008, 0.0012, 0.0007],
34
+ device='cuda:0')
35
+ 2023-04-04 10:38:24,826 INFO [decode.py:586] batch 50/?, cuts processed until now is 2840
36
+ 2023-04-04 10:38:25,708 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.0014, 1.1741, 1.8564, 2.1889, 1.8678, 1.7254, 1.6541, 1.7504],
37
+ device='cuda:0'), covar=tensor([0.2613, 0.7024, 0.3231, 0.5580, 0.4379, 0.6271, 0.6111, 0.6292],
38
+ device='cuda:0'), in_proj_covar=tensor([0.0507, 0.0581, 0.0659, 0.0635, 0.0561, 0.0612, 0.0649, 0.0635],
39
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0002, 0.0001, 0.0001, 0.0002, 0.0002],
40
+ device='cuda:0')
41
+ 2023-04-04 10:38:28,421 INFO [decode.py:602] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
42
+ 2023-04-04 10:38:28,524 INFO [utils.py:558] [test-other-greedy_search] %WER 6.35% [3323 / 52343, 322 ins, 322 del, 2679 sub ]
43
+ 2023-04-04 10:38:28,727 INFO [decode.py:615] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-greedy_search-epoch-99-avg-1-context-2-max-sym-per-frame-1.txt
44
+ 2023-04-04 10:38:28,727 INFO [decode.py:631]
45
+ For test-other, WER of different settings are:
46
+ greedy_search 6.35 best for test-other
47
+
48
+ 2023-04-04 10:38:28,727 INFO [decode.py:836] Done!
decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-10-58-09 ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-04 10:58:09,872 INFO [decode.py:650] Decoding started
2
+ 2023-04-04 10:58:09,872 INFO [decode.py:656] Device: cuda:0
3
+ 2023-04-04 10:58:09,874 INFO [decode.py:666] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '1a059bd-dirty', 'icefall-git-date': 'Mon Apr 3 23:17:14 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-04 10:58:09,874 INFO [decode.py:668] About to create model
5
+ 2023-04-04 10:58:10,475 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-04 10:58:10,488 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
7
+ 2023-04-04 10:58:12,820 INFO [decode.py:773] Number of model parameters: 70369391
8
+ 2023-04-04 10:58:12,820 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-04 10:58:12,822 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-04 10:58:17,163 INFO [decode.py:561] batch 0/?, cuts processed until now is 26
11
+ 2023-04-04 10:59:04,873 INFO [decode.py:561] batch 50/?, cuts processed until now is 2526
12
+ 2023-04-04 10:59:08,082 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.3428, 1.1291, 3.8454, 3.5745, 3.3987, 3.8075, 3.9097, 3.3450],
13
+ device='cuda:0'), covar=tensor([0.7416, 0.6198, 0.1054, 0.1629, 0.1179, 0.1146, 0.0398, 0.1268],
14
+ device='cuda:0'), in_proj_covar=tensor([0.0336, 0.0311, 0.0437, 0.0450, 0.0361, 0.0415, 0.0346, 0.0390],
15
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0001, 0.0002],
16
+ device='cuda:0')
17
+ 2023-04-04 10:59:08,817 INFO [decode.py:575] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
18
+ 2023-04-04 10:59:08,914 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.46% [1292 / 52576, 143 ins, 101 del, 1048 sub ]
19
+ 2023-04-04 10:59:09,114 INFO [decode.py:586] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
20
+ 2023-04-04 10:59:09,114 INFO [decode.py:600]
21
+ For test-clean, WER of different settings are:
22
+ greedy_search 2.46 best for test-clean
23
+
24
+ 2023-04-04 10:59:11,273 INFO [decode.py:561] batch 0/?, cuts processed until now is 30
25
+ 2023-04-04 10:59:38,454 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.3609, 1.1987, 3.8710, 3.5310, 3.4165, 3.6922, 3.8854, 3.3341],
26
+ device='cuda:0'), covar=tensor([0.6862, 0.5960, 0.0934, 0.1721, 0.1150, 0.1188, 0.0519, 0.1388],
27
+ device='cuda:0'), in_proj_covar=tensor([0.0336, 0.0311, 0.0437, 0.0450, 0.0361, 0.0415, 0.0346, 0.0390],
28
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0001, 0.0002],
29
+ device='cuda:0')
30
+ 2023-04-04 10:59:53,538 INFO [decode.py:561] batch 50/?, cuts processed until now is 2840
31
+ 2023-04-04 10:59:57,073 INFO [decode.py:575] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
32
+ 2023-04-04 10:59:57,175 INFO [utils.py:558] [test-other-greedy_search] %WER 6.16% [3224 / 52343, 322 ins, 303 del, 2599 sub ]
33
+ 2023-04-04 10:59:57,384 INFO [decode.py:586] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
34
+ 2023-04-04 10:59:57,385 INFO [decode.py:600]
35
+ For test-other, WER of different settings are:
36
+ greedy_search 6.16 best for test-other
37
+
38
+ 2023-04-04 10:59:57,385 INFO [decode.py:805] Done!
decoding-results/greedy_search/log-decode-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1-2023-04-04-11-22-52 ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-04 11:22:52,235 INFO [decode.py:659] Decoding started
2
+ 2023-04-04 11:22:52,235 INFO [decode.py:665] Device: cuda:0
3
+ 2023-04-04 11:22:52,239 INFO [decode.py:675] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': '0994afb-dirty', 'icefall-git-date': 'Tue Apr 4 10:59:02 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'right_padding': 64, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp/greedy_search'), 'suffix': 'epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-04-04 11:22:52,239 INFO [decode.py:677] About to create model
5
+ 2023-04-04 11:22:52,830 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-04-04 11:22:52,846 INFO [checkpoint.py:112] Loading checkpoint from pruned_transducer_stateless7_streaming_multi/exp/epoch-99.pt
7
+ 2023-04-04 11:22:55,051 INFO [decode.py:782] Number of model parameters: 70369391
8
+ 2023-04-04 11:22:55,052 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
9
+ 2023-04-04 11:22:55,054 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
10
+ 2023-04-04 11:22:59,267 INFO [decode.py:569] batch 0/?, cuts processed until now is 26
11
+ 2023-04-04 11:23:47,552 INFO [decode.py:569] batch 50/?, cuts processed until now is 2526
12
+ 2023-04-04 11:23:51,606 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
13
+ 2023-04-04 11:23:51,699 INFO [utils.py:558] [test-clean-greedy_search] %WER 2.46% [1292 / 52576, 148 ins, 99 del, 1045 sub ]
14
+ 2023-04-04 11:23:51,895 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-clean-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
15
+ 2023-04-04 11:23:51,896 INFO [decode.py:608]
16
+ For test-clean, WER of different settings are:
17
+ greedy_search 2.46 best for test-clean
18
+
19
+ 2023-04-04 11:23:54,113 INFO [decode.py:569] batch 0/?, cuts processed until now is 30
20
+ 2023-04-04 11:24:01,474 INFO [zipformer.py:2401] attn_weights_entropy = tensor([2.1750, 2.5418, 1.0587, 1.2736, 1.7698, 1.3217, 3.1138, 1.7876],
21
+ device='cuda:0'), covar=tensor([0.0603, 0.0441, 0.0655, 0.1150, 0.0538, 0.0888, 0.0428, 0.0611],
22
+ device='cuda:0'), in_proj_covar=tensor([0.0058, 0.0075, 0.0053, 0.0051, 0.0056, 0.0056, 0.0094, 0.0054],
23
+ device='cuda:0'), out_proj_covar=tensor([0.0008, 0.0010, 0.0007, 0.0008, 0.0008, 0.0008, 0.0012, 0.0007],
24
+ device='cuda:0')
25
+ 2023-04-04 11:24:12,789 INFO [zipformer.py:2401] attn_weights_entropy = tensor([1.8796, 1.6856, 1.9582, 2.2762, 2.1299, 1.6889, 1.1918, 1.9793],
26
+ device='cuda:0'), covar=tensor([0.0562, 0.0823, 0.0437, 0.0278, 0.0337, 0.0568, 0.0736, 0.0329],
27
+ device='cuda:0'), in_proj_covar=tensor([0.0204, 0.0213, 0.0191, 0.0172, 0.0174, 0.0193, 0.0167, 0.0184],
28
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
29
+ device='cuda:0')
30
+ 2023-04-04 11:24:38,235 INFO [decode.py:569] batch 50/?, cuts processed until now is 2840
31
+ 2023-04-04 11:24:41,805 INFO [decode.py:583] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp/greedy_search/recogs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
32
+ 2023-04-04 11:24:41,911 INFO [utils.py:558] [test-other-greedy_search] %WER 6.18% [3235 / 52343, 335 ins, 303 del, 2597 sub ]
33
+ 2023-04-04 11:24:42,118 INFO [decode.py:594] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp/greedy_search/errs-test-other-epoch-99-avg-1-streaming-chunk-size-32-context-2-max-sym-per-frame-1.txt
34
+ 2023-04-04 11:24:42,119 INFO [decode.py:608]
35
+ For test-other, WER of different settings are:
36
+ greedy_search 6.18 best for test-other
37
+
38
+ 2023-04-04 11:24:42,119 INFO [decode.py:814] Done!