File size: 6,269 Bytes
26c452f 15f147e 26c452f 6e0cf0b 26c452f b80d3e4 26c452f 07f3839 26c452f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-Facial-Confidence
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-Facial-Confidence
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the FacialConfidence dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2560
- Accuracy: 0.8970
## Model description
Facial Confidence is an image classification model which takes a black and white image of a persons headshot and classifies it as confident or unconfident.
## Intended uses & limitations
The model is intended to help with behavioral analysis tasks. The model is limited to black and white images where the image is a zoomed in headshot of a person (For best output the input image should be as zoomed in on the subjects face as possible without cutting any aspects of their head)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6103 | 0.0557 | 100 | 0.5715 | 0.7310 |
| 0.554 | 0.1114 | 200 | 0.5337 | 0.7194 |
| 0.4275 | 0.1671 | 300 | 0.5142 | 0.7549 |
| 0.5831 | 0.2228 | 400 | 0.5570 | 0.7345 |
| 0.5804 | 0.2786 | 500 | 0.4909 | 0.7660 |
| 0.5652 | 0.3343 | 600 | 0.4956 | 0.7764 |
| 0.4513 | 0.3900 | 700 | 0.4294 | 0.7972 |
| 0.4217 | 0.4457 | 800 | 0.4619 | 0.7924 |
| 0.435 | 0.5014 | 900 | 0.4563 | 0.7901 |
| 0.3943 | 0.5571 | 1000 | 0.4324 | 0.7917 |
| 0.4136 | 0.6128 | 1100 | 0.4131 | 0.8110 |
| 0.3302 | 0.6685 | 1200 | 0.4516 | 0.8054 |
| 0.4945 | 0.7242 | 1300 | 0.4135 | 0.8164 |
| 0.3729 | 0.7799 | 1400 | 0.4010 | 0.8139 |
| 0.4865 | 0.8357 | 1500 | 0.4145 | 0.8174 |
| 0.4011 | 0.8914 | 1600 | 0.4098 | 0.8112 |
| 0.4287 | 0.9471 | 1700 | 0.3914 | 0.8181 |
| 0.3644 | 1.0028 | 1800 | 0.3948 | 0.8188 |
| 0.3768 | 1.0585 | 1900 | 0.4044 | 0.8266 |
| 0.383 | 1.1142 | 2000 | 0.4363 | 0.8064 |
| 0.4011 | 1.1699 | 2100 | 0.4424 | 0.8025 |
| 0.4079 | 1.2256 | 2200 | 0.4384 | 0.7853 |
| 0.2791 | 1.2813 | 2300 | 0.4491 | 0.8089 |
| 0.3159 | 1.3370 | 2400 | 0.3863 | 0.8274 |
| 0.4306 | 1.3928 | 2500 | 0.3944 | 0.8158 |
| 0.3386 | 1.4485 | 2600 | 0.3835 | 0.8305 |
| 0.395 | 1.5042 | 2700 | 0.3812 | 0.8261 |
| 0.3041 | 1.5599 | 2800 | 0.3736 | 0.8312 |
| 0.3365 | 1.6156 | 2900 | 0.4420 | 0.8097 |
| 0.3697 | 1.6713 | 3000 | 0.3808 | 0.8353 |
| 0.3661 | 1.7270 | 3100 | 0.4046 | 0.8084 |
| 0.3208 | 1.7827 | 3200 | 0.4042 | 0.8328 |
| 0.3511 | 1.8384 | 3300 | 0.4113 | 0.8192 |
| 0.3246 | 1.8942 | 3400 | 0.3611 | 0.8377 |
| 0.3616 | 1.9499 | 3500 | 0.4207 | 0.8231 |
| 0.2726 | 2.0056 | 3600 | 0.3650 | 0.8342 |
| 0.1879 | 2.0613 | 3700 | 0.4334 | 0.8359 |
| 0.2981 | 2.1170 | 3800 | 0.3657 | 0.8435 |
| 0.227 | 2.1727 | 3900 | 0.3948 | 0.8399 |
| 0.3184 | 2.2284 | 4000 | 0.4229 | 0.8377 |
| 0.2391 | 2.2841 | 4100 | 0.3824 | 0.8405 |
| 0.2019 | 2.3398 | 4200 | 0.4628 | 0.8345 |
| 0.1931 | 2.3955 | 4300 | 0.3848 | 0.8448 |
| 0.238 | 2.4513 | 4400 | 0.3948 | 0.8398 |
| 0.2633 | 2.5070 | 4500 | 0.3779 | 0.8440 |
| 0.1829 | 2.5627 | 4600 | 0.3901 | 0.8455 |
| 0.2286 | 2.6184 | 4700 | 0.3797 | 0.8481 |
| 0.2123 | 2.6741 | 4800 | 0.4203 | 0.8502 |
| 0.266 | 2.7298 | 4900 | 0.4073 | 0.8455 |
| 0.1768 | 2.7855 | 5000 | 0.3750 | 0.8498 |
| 0.1659 | 2.8412 | 5100 | 0.3906 | 0.8427 |
| 0.1644 | 2.8969 | 5200 | 0.3833 | 0.8466 |
| 0.241 | 2.9526 | 5300 | 0.4071 | 0.8476 |
| 0.16 | 3.0084 | 5400 | 0.3691 | 0.8530 |
| 0.0788 | 3.0641 | 5500 | 0.4656 | 0.8514 |
| 0.1244 | 3.1198 | 5600 | 0.4990 | 0.8484 |
| 0.1423 | 3.1755 | 5700 | 0.5219 | 0.8475 |
| 0.1279 | 3.2312 | 5800 | 0.5687 | 0.8515 |
| 0.0974 | 3.2869 | 5900 | 0.5386 | 0.8458 |
| 0.065 | 3.3426 | 6000 | 0.5215 | 0.8454 |
| 0.0497 | 3.3983 | 6100 | 0.5161 | 0.8483 |
| 0.1871 | 3.4540 | 6200 | 0.5148 | 0.8523 |
| 0.0891 | 3.5097 | 6300 | 0.4915 | 0.8527 |
| 0.1375 | 3.5655 | 6400 | 0.5067 | 0.8509 |
| 0.1333 | 3.6212 | 6500 | 0.5272 | 0.8532 |
| 0.2635 | 3.6769 | 6600 | 0.5170 | 0.8516 |
| 0.0375 | 3.7326 | 6700 | 0.5148 | 0.8534 |
| 0.1286 | 3.7883 | 6800 | 0.4945 | 0.8543 |
| 0.091 | 3.8440 | 6900 | 0.4948 | 0.8540 |
| 0.1088 | 3.8997 | 7000 | 0.4985 | 0.8532 |
| 0.0598 | 3.9554 | 7100 | 0.4969 | 0.8514 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|