File size: 28,993 Bytes
f9e357c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/all-mpnet-base-v2
metrics:
- accuracy
widget:
- text: Needs Power and Mouse Cable to Plug in:Needs Power and Mouse Cable to Plug
in back instead of side, In the way of operating a mouse in small area.
- text: wireless router via built-in wireless took no time:Connecting to my wireless
router via built-in wireless took no time at all.
- text: The battery life is probably an:The battery life is probably an hour at best.
- text: and with free shipping and no tax:The 13" Macbook Pro just fits in my budget
and with free shipping and no tax to CA this is the best price we can get for
a great product.
- text: product is top quality.:The price was very good, and the product is top quality.
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7788235294117647
name: Accuracy
---
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. **Use this SetFit model to classify the filtered aspect span candidates.**
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_sm
- **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
- **SetFitABSA Polarity Model:** [marcelomoreno26/all-mpnet-base-v2-absa-polarity2](https://huggingface.co/marcelomoreno26/all-mpnet-base-v2-absa-polarity2)
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral | <ul><li>'skip taking the cord with me because:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'The tech guy then said the:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'all dark, power light steady, hard:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
| positive | <ul><li>'of the good battery life.:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'is of high quality, has a:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li><li>'has a killer GUI, is extremely:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li></ul> |
| negative | <ul><li>'then said the service center does not do:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'concern to the "sales" team, which is:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'on, no GUI, screen all:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
| conflict | <ul><li>'-No backlit keyboard, but not:-No backlit keyboard, but not an issue for me.'</li><li>"to replace the battery once, but:I did have to replace the battery once, but that was only a couple months ago and it's been working perfect ever since."</li><li>'Yes, they cost more, but:Yes, they cost more, but they more than make up for it in speed, construction quality, and longevity.'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7788 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"setfit-absa-aspect",
"marcelomoreno26/all-mpnet-base-v2-absa-polarity2",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 24.3447 | 80 |
| Label | Training Sample Count |
|:---------|:----------------------|
| negative | 235 |
| neutral | 127 |
| positive | 271 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.3333 | 1 | 0.3749 | - |
| 0.0030 | 50 | 0.3097 | - |
| 0.0059 | 100 | 0.2214 | - |
| 0.0089 | 150 | 0.2125 | - |
| 0.0119 | 200 | 0.3202 | - |
| 0.0148 | 250 | 0.1878 | - |
| 0.0178 | 300 | 0.1208 | - |
| 0.0208 | 350 | 0.2414 | - |
| 0.0237 | 400 | 0.1961 | - |
| 0.0267 | 450 | 0.0607 | - |
| 0.0296 | 500 | 0.1103 | - |
| 0.0326 | 550 | 0.1213 | - |
| 0.0356 | 600 | 0.0972 | - |
| 0.0385 | 650 | 0.0124 | - |
| 0.0415 | 700 | 0.0151 | - |
| 0.0445 | 750 | 0.1517 | - |
| 0.0474 | 800 | 0.004 | - |
| 0.0504 | 850 | 0.0204 | - |
| 0.0534 | 900 | 0.0541 | - |
| 0.0563 | 950 | 0.003 | - |
| 0.0593 | 1000 | 0.0008 | - |
| 0.0623 | 1050 | 0.0703 | - |
| 0.0652 | 1100 | 0.0013 | - |
| 0.0682 | 1150 | 0.0007 | - |
| 0.0712 | 1200 | 0.0009 | - |
| 0.0741 | 1250 | 0.0004 | - |
| 0.0771 | 1300 | 0.0004 | - |
| 0.0801 | 1350 | 0.0005 | - |
| 0.0830 | 1400 | 0.0006 | - |
| 0.0860 | 1450 | 0.0004 | - |
| 0.0889 | 1500 | 0.0002 | - |
| 0.0919 | 1550 | 0.0002 | - |
| 0.0949 | 1600 | 0.0001 | - |
| 0.0978 | 1650 | 0.0006 | - |
| 0.1008 | 1700 | 0.0002 | - |
| 0.1038 | 1750 | 0.0012 | - |
| 0.1067 | 1800 | 0.0008 | - |
| 0.1097 | 1850 | 0.0048 | - |
| 0.1127 | 1900 | 0.0007 | - |
| 0.1156 | 1950 | 0.0001 | - |
| 0.1186 | 2000 | 0.0001 | - |
| 0.1216 | 2050 | 0.0001 | - |
| 0.1245 | 2100 | 0.0001 | - |
| 0.1275 | 2150 | 0.0001 | - |
| 0.1305 | 2200 | 0.0001 | - |
| 0.1334 | 2250 | 0.0 | - |
| 0.1364 | 2300 | 0.0001 | - |
| 0.1394 | 2350 | 0.0002 | - |
| 0.1423 | 2400 | 0.0 | - |
| 0.1453 | 2450 | 0.0 | - |
| 0.1482 | 2500 | 0.0589 | - |
| 0.1512 | 2550 | 0.0036 | - |
| 0.1542 | 2600 | 0.0013 | - |
| 0.1571 | 2650 | 0.0 | - |
| 0.1601 | 2700 | 0.0001 | - |
| 0.1631 | 2750 | 0.0004 | - |
| 0.1660 | 2800 | 0.0 | - |
| 0.1690 | 2850 | 0.0002 | - |
| 0.1720 | 2900 | 0.0096 | - |
| 0.1749 | 2950 | 0.0 | - |
| 0.1779 | 3000 | 0.0 | - |
| 0.1809 | 3050 | 0.0001 | - |
| 0.1838 | 3100 | 0.0 | - |
| 0.1868 | 3150 | 0.0001 | - |
| 0.1898 | 3200 | 0.0001 | - |
| 0.1927 | 3250 | 0.0 | - |
| 0.1957 | 3300 | 0.0 | - |
| 0.1986 | 3350 | 0.0001 | - |
| 0.2016 | 3400 | 0.0 | - |
| 0.2046 | 3450 | 0.0002 | - |
| 0.2075 | 3500 | 0.0 | - |
| 0.2105 | 3550 | 0.0 | - |
| 0.2135 | 3600 | 0.0001 | - |
| 0.2164 | 3650 | 0.0 | - |
| 0.2194 | 3700 | 0.0 | - |
| 0.2224 | 3750 | 0.0001 | - |
| 0.2253 | 3800 | 0.0 | - |
| 0.2283 | 3850 | 0.0 | - |
| 0.2313 | 3900 | 0.0 | - |
| 0.2342 | 3950 | 0.0 | - |
| 0.2372 | 4000 | 0.0 | - |
| 0.2402 | 4050 | 0.0 | - |
| 0.2431 | 4100 | 0.0 | - |
| 0.2461 | 4150 | 0.0 | - |
| 0.2491 | 4200 | 0.0 | - |
| 0.2520 | 4250 | 0.0 | - |
| 0.2550 | 4300 | 0.0 | - |
| 0.2579 | 4350 | 0.0 | - |
| 0.2609 | 4400 | 0.0 | - |
| 0.2639 | 4450 | 0.0 | - |
| 0.2668 | 4500 | 0.0 | - |
| 0.2698 | 4550 | 0.0 | - |
| 0.2728 | 4600 | 0.0 | - |
| 0.2757 | 4650 | 0.0 | - |
| 0.2787 | 4700 | 0.0 | - |
| 0.2817 | 4750 | 0.0 | - |
| 0.2846 | 4800 | 0.0 | - |
| 0.2876 | 4850 | 0.0001 | - |
| 0.2906 | 4900 | 0.0071 | - |
| 0.2935 | 4950 | 0.1151 | - |
| 0.2965 | 5000 | 0.0055 | - |
| 0.2995 | 5050 | 0.0005 | - |
| 0.3024 | 5100 | 0.0041 | - |
| 0.3054 | 5150 | 0.0001 | - |
| 0.3083 | 5200 | 0.0003 | - |
| 0.3113 | 5250 | 0.0001 | - |
| 0.3143 | 5300 | 0.0 | - |
| 0.3172 | 5350 | 0.0001 | - |
| 0.3202 | 5400 | 0.0 | - |
| 0.3232 | 5450 | 0.0 | - |
| 0.3261 | 5500 | 0.0 | - |
| 0.3291 | 5550 | 0.0 | - |
| 0.3321 | 5600 | 0.0 | - |
| 0.3350 | 5650 | 0.0 | - |
| 0.3380 | 5700 | 0.0 | - |
| 0.3410 | 5750 | 0.0 | - |
| 0.3439 | 5800 | 0.0 | - |
| 0.3469 | 5850 | 0.0 | - |
| 0.3499 | 5900 | 0.0 | - |
| 0.3528 | 5950 | 0.0 | - |
| 0.3558 | 6000 | 0.0 | - |
| 0.3588 | 6050 | 0.0 | - |
| 0.3617 | 6100 | 0.0 | - |
| 0.3647 | 6150 | 0.0 | - |
| 0.3676 | 6200 | 0.0 | - |
| 0.3706 | 6250 | 0.0 | - |
| 0.3736 | 6300 | 0.0 | - |
| 0.3765 | 6350 | 0.0 | - |
| 0.3795 | 6400 | 0.0 | - |
| 0.3825 | 6450 | 0.0 | - |
| 0.3854 | 6500 | 0.0 | - |
| 0.3884 | 6550 | 0.0 | - |
| 0.3914 | 6600 | 0.0 | - |
| 0.3943 | 6650 | 0.0 | - |
| 0.3973 | 6700 | 0.0 | - |
| 0.4003 | 6750 | 0.0 | - |
| 0.4032 | 6800 | 0.0 | - |
| 0.4062 | 6850 | 0.0 | - |
| 0.4092 | 6900 | 0.0 | - |
| 0.4121 | 6950 | 0.0 | - |
| 0.4151 | 7000 | 0.0 | - |
| 0.4181 | 7050 | 0.0 | - |
| 0.4210 | 7100 | 0.0 | - |
| 0.4240 | 7150 | 0.0 | - |
| 0.4269 | 7200 | 0.0 | - |
| 0.4299 | 7250 | 0.0 | - |
| 0.4329 | 7300 | 0.0 | - |
| 0.4358 | 7350 | 0.0 | - |
| 0.4388 | 7400 | 0.0 | - |
| 0.4418 | 7450 | 0.0 | - |
| 0.4447 | 7500 | 0.0 | - |
| 0.4477 | 7550 | 0.0 | - |
| 0.4507 | 7600 | 0.0 | - |
| 0.4536 | 7650 | 0.0003 | - |
| 0.4566 | 7700 | 0.0 | - |
| 0.4596 | 7750 | 0.0 | - |
| 0.4625 | 7800 | 0.0 | - |
| 0.4655 | 7850 | 0.0 | - |
| 0.4685 | 7900 | 0.0 | - |
| 0.4714 | 7950 | 0.0 | - |
| 0.4744 | 8000 | 0.0 | - |
| 0.4773 | 8050 | 0.0 | - |
| 0.4803 | 8100 | 0.0 | - |
| 0.4833 | 8150 | 0.0 | - |
| 0.4862 | 8200 | 0.0 | - |
| 0.4892 | 8250 | 0.0 | - |
| 0.4922 | 8300 | 0.0 | - |
| 0.4951 | 8350 | 0.0 | - |
| 0.4981 | 8400 | 0.0 | - |
| 0.5011 | 8450 | 0.0 | - |
| 0.5040 | 8500 | 0.0 | - |
| 0.5070 | 8550 | 0.0 | - |
| 0.5100 | 8600 | 0.0 | - |
| 0.5129 | 8650 | 0.0 | - |
| 0.5159 | 8700 | 0.0 | - |
| 0.5189 | 8750 | 0.0 | - |
| 0.5218 | 8800 | 0.0 | - |
| 0.5248 | 8850 | 0.0 | - |
| 0.5278 | 8900 | 0.0 | - |
| 0.5307 | 8950 | 0.0 | - |
| 0.5337 | 9000 | 0.0 | - |
| 0.5366 | 9050 | 0.0 | - |
| 0.5396 | 9100 | 0.0 | - |
| 0.5426 | 9150 | 0.0 | - |
| 0.5455 | 9200 | 0.0 | - |
| 0.5485 | 9250 | 0.0 | - |
| 0.5515 | 9300 | 0.0 | - |
| 0.5544 | 9350 | 0.0 | - |
| 0.5574 | 9400 | 0.0 | - |
| 0.5604 | 9450 | 0.0 | - |
| 0.5633 | 9500 | 0.0 | - |
| 0.5663 | 9550 | 0.0 | - |
| 0.5693 | 9600 | 0.0 | - |
| 0.5722 | 9650 | 0.0 | - |
| 0.5752 | 9700 | 0.0 | - |
| 0.5782 | 9750 | 0.0 | - |
| 0.5811 | 9800 | 0.0 | - |
| 0.5841 | 9850 | 0.0 | - |
| 0.5870 | 9900 | 0.0 | - |
| 0.5900 | 9950 | 0.0 | - |
| 0.5930 | 10000 | 0.0 | - |
| 0.5959 | 10050 | 0.0 | - |
| 0.5989 | 10100 | 0.0 | - |
| 0.6019 | 10150 | 0.0 | - |
| 0.6048 | 10200 | 0.0 | - |
| 0.6078 | 10250 | 0.0 | - |
| 0.6108 | 10300 | 0.0 | - |
| 0.6137 | 10350 | 0.0 | - |
| 0.6167 | 10400 | 0.0 | - |
| 0.6197 | 10450 | 0.0 | - |
| 0.6226 | 10500 | 0.0 | - |
| 0.6256 | 10550 | 0.0 | - |
| 0.6286 | 10600 | 0.0 | - |
| 0.6315 | 10650 | 0.0 | - |
| 0.6345 | 10700 | 0.0 | - |
| 0.6375 | 10750 | 0.0 | - |
| 0.6404 | 10800 | 0.0 | - |
| 0.6434 | 10850 | 0.0 | - |
| 0.6463 | 10900 | 0.0 | - |
| 0.6493 | 10950 | 0.0 | - |
| 0.6523 | 11000 | 0.0 | - |
| 0.6552 | 11050 | 0.0 | - |
| 0.6582 | 11100 | 0.0 | - |
| 0.6612 | 11150 | 0.0 | - |
| 0.6641 | 11200 | 0.0 | - |
| 0.6671 | 11250 | 0.0 | - |
| 0.6701 | 11300 | 0.0 | - |
| 0.6730 | 11350 | 0.0 | - |
| 0.6760 | 11400 | 0.0 | - |
| 0.6790 | 11450 | 0.0 | - |
| 0.6819 | 11500 | 0.0 | - |
| 0.6849 | 11550 | 0.0 | - |
| 0.6879 | 11600 | 0.0 | - |
| 0.6908 | 11650 | 0.0 | - |
| 0.6938 | 11700 | 0.0 | - |
| 0.6968 | 11750 | 0.0 | - |
| 0.6997 | 11800 | 0.0 | - |
| 0.7027 | 11850 | 0.0 | - |
| 0.7056 | 11900 | 0.0 | - |
| 0.7086 | 11950 | 0.0 | - |
| 0.7116 | 12000 | 0.0 | - |
| 0.7145 | 12050 | 0.0 | - |
| 0.7175 | 12100 | 0.0 | - |
| 0.7205 | 12150 | 0.0 | - |
| 0.7234 | 12200 | 0.0 | - |
| 0.7264 | 12250 | 0.0 | - |
| 0.7294 | 12300 | 0.0 | - |
| 0.7323 | 12350 | 0.0 | - |
| 0.7353 | 12400 | 0.0 | - |
| 0.7383 | 12450 | 0.0 | - |
| 0.7412 | 12500 | 0.0 | - |
| 0.7442 | 12550 | 0.0 | - |
| 0.7472 | 12600 | 0.0 | - |
| 0.7501 | 12650 | 0.0 | - |
| 0.7531 | 12700 | 0.0 | - |
| 0.7560 | 12750 | 0.0 | - |
| 0.7590 | 12800 | 0.0 | - |
| 0.7620 | 12850 | 0.0 | - |
| 0.7649 | 12900 | 0.0 | - |
| 0.7679 | 12950 | 0.0 | - |
| 0.7709 | 13000 | 0.0 | - |
| 0.7738 | 13050 | 0.0 | - |
| 0.7768 | 13100 | 0.0 | - |
| 0.7798 | 13150 | 0.0 | - |
| 0.7827 | 13200 | 0.0 | - |
| 0.7857 | 13250 | 0.0 | - |
| 0.7887 | 13300 | 0.0 | - |
| 0.7916 | 13350 | 0.0 | - |
| 0.7946 | 13400 | 0.0 | - |
| 0.7976 | 13450 | 0.0 | - |
| 0.8005 | 13500 | 0.0 | - |
| 0.8035 | 13550 | 0.0 | - |
| 0.8065 | 13600 | 0.0 | - |
| 0.8094 | 13650 | 0.0 | - |
| 0.8124 | 13700 | 0.0 | - |
| 0.8153 | 13750 | 0.0 | - |
| 0.8183 | 13800 | 0.0 | - |
| 0.8213 | 13850 | 0.0 | - |
| 0.8242 | 13900 | 0.0 | - |
| 0.8272 | 13950 | 0.0 | - |
| 0.8302 | 14000 | 0.0 | - |
| 0.8331 | 14050 | 0.0 | - |
| 0.8361 | 14100 | 0.0 | - |
| 0.8391 | 14150 | 0.0 | - |
| 0.8420 | 14200 | 0.0 | - |
| 0.8450 | 14250 | 0.0 | - |
| 0.8480 | 14300 | 0.0 | - |
| 0.8509 | 14350 | 0.0 | - |
| 0.8539 | 14400 | 0.0 | - |
| 0.8569 | 14450 | 0.0 | - |
| 0.8598 | 14500 | 0.0 | - |
| 0.8628 | 14550 | 0.0 | - |
| 0.8657 | 14600 | 0.0 | - |
| 0.8687 | 14650 | 0.0 | - |
| 0.8717 | 14700 | 0.0 | - |
| 0.8746 | 14750 | 0.0 | - |
| 0.8776 | 14800 | 0.0 | - |
| 0.8806 | 14850 | 0.0 | - |
| 0.8835 | 14900 | 0.0 | - |
| 0.8865 | 14950 | 0.0 | - |
| 0.8895 | 15000 | 0.0 | - |
| 0.8924 | 15050 | 0.0 | - |
| 0.8954 | 15100 | 0.0 | - |
| 0.8984 | 15150 | 0.0 | - |
| 0.9013 | 15200 | 0.0 | - |
| 0.9043 | 15250 | 0.0 | - |
| 0.9073 | 15300 | 0.0 | - |
| 0.9102 | 15350 | 0.0 | - |
| 0.9132 | 15400 | 0.0 | - |
| 0.9162 | 15450 | 0.0 | - |
| 0.9191 | 15500 | 0.0 | - |
| 0.9221 | 15550 | 0.0 | - |
| 0.9250 | 15600 | 0.0 | - |
| 0.9280 | 15650 | 0.0 | - |
| 0.9310 | 15700 | 0.0 | - |
| 0.9339 | 15750 | 0.0 | - |
| 0.9369 | 15800 | 0.0 | - |
| 0.9399 | 15850 | 0.0 | - |
| 0.9428 | 15900 | 0.0 | - |
| 0.9458 | 15950 | 0.0 | - |
| 0.9488 | 16000 | 0.0 | - |
| 0.9517 | 16050 | 0.0 | - |
| 0.9547 | 16100 | 0.0 | - |
| 0.9577 | 16150 | 0.0 | - |
| 0.9606 | 16200 | 0.0 | - |
| 0.9636 | 16250 | 0.0 | - |
| 0.9666 | 16300 | 0.0 | - |
| 0.9695 | 16350 | 0.0 | - |
| 0.9725 | 16400 | 0.0 | - |
| 0.9755 | 16450 | 0.0 | - |
| 0.9784 | 16500 | 0.0 | - |
| 0.9814 | 16550 | 0.0 | - |
| 0.9843 | 16600 | 0.0 | - |
| 0.9873 | 16650 | 0.0 | - |
| 0.9903 | 16700 | 0.0 | - |
| 0.9932 | 16750 | 0.0 | - |
| 0.9962 | 16800 | 0.0 | - |
| 0.9992 | 16850 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |