File size: 28,993 Bytes
f9e357c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/all-mpnet-base-v2
metrics:
- accuracy
widget:
- text: Needs Power and Mouse Cable to Plug in:Needs Power and Mouse Cable to Plug
    in back instead of side, In the way of operating a mouse in small area.
- text: wireless router via built-in wireless took no time:Connecting to my wireless
    router via built-in wireless took no time at all.
- text: The battery life is probably an:The battery life is probably an hour at best.
- text: and with free shipping and no tax:The 13" Macbook Pro just fits in my budget
    and with free shipping and no tax to CA this is the best price we can get for
    a great product.
- text: product is top quality.:The price was very good, and the product is top quality.
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7788235294117647
      name: Accuracy
---

# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. **Use this SetFit model to classify the filtered aspect span candidates.**

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_sm
- **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
- **SetFitABSA Polarity Model:** [marcelomoreno26/all-mpnet-base-v2-absa-polarity2](https://huggingface.co/marcelomoreno26/all-mpnet-base-v2-absa-polarity2)
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label    | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral  | <ul><li>'skip taking the cord with me because:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'The tech guy then said the:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'all dark, power light steady, hard:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul>                                                                                                |
| positive | <ul><li>'of the good battery life.:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'is of high quality, has a:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li><li>'has a killer GUI, is extremely:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li></ul>                                                                                                                                       |
| negative | <ul><li>'then said the service center does not do:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'concern to the "sales" team, which is:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'on, no GUI, screen all:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
| conflict | <ul><li>'-No backlit keyboard, but not:-No backlit keyboard, but not an issue for me.'</li><li>"to replace the battery once, but:I did have to replace the battery once, but that was only a couple months ago and it's been working perfect ever since."</li><li>'Yes, they cost more, but:Yes, they cost more, but they more than make up for it in speed, construction quality, and longevity.'</li></ul>                                                                                                                                                                                                                                                                                                             |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7788   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "setfit-absa-aspect",
    "marcelomoreno26/all-mpnet-base-v2-absa-polarity2",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 3   | 24.3447 | 80  |

| Label    | Training Sample Count |
|:---------|:----------------------|
| negative | 235                   |
| neutral  | 127                   |
| positive | 271                   |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step  | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.3333 | 1     | 0.3749        | -               |
| 0.0030 | 50    | 0.3097        | -               |
| 0.0059 | 100   | 0.2214        | -               |
| 0.0089 | 150   | 0.2125        | -               |
| 0.0119 | 200   | 0.3202        | -               |
| 0.0148 | 250   | 0.1878        | -               |
| 0.0178 | 300   | 0.1208        | -               |
| 0.0208 | 350   | 0.2414        | -               |
| 0.0237 | 400   | 0.1961        | -               |
| 0.0267 | 450   | 0.0607        | -               |
| 0.0296 | 500   | 0.1103        | -               |
| 0.0326 | 550   | 0.1213        | -               |
| 0.0356 | 600   | 0.0972        | -               |
| 0.0385 | 650   | 0.0124        | -               |
| 0.0415 | 700   | 0.0151        | -               |
| 0.0445 | 750   | 0.1517        | -               |
| 0.0474 | 800   | 0.004         | -               |
| 0.0504 | 850   | 0.0204        | -               |
| 0.0534 | 900   | 0.0541        | -               |
| 0.0563 | 950   | 0.003         | -               |
| 0.0593 | 1000  | 0.0008        | -               |
| 0.0623 | 1050  | 0.0703        | -               |
| 0.0652 | 1100  | 0.0013        | -               |
| 0.0682 | 1150  | 0.0007        | -               |
| 0.0712 | 1200  | 0.0009        | -               |
| 0.0741 | 1250  | 0.0004        | -               |
| 0.0771 | 1300  | 0.0004        | -               |
| 0.0801 | 1350  | 0.0005        | -               |
| 0.0830 | 1400  | 0.0006        | -               |
| 0.0860 | 1450  | 0.0004        | -               |
| 0.0889 | 1500  | 0.0002        | -               |
| 0.0919 | 1550  | 0.0002        | -               |
| 0.0949 | 1600  | 0.0001        | -               |
| 0.0978 | 1650  | 0.0006        | -               |
| 0.1008 | 1700  | 0.0002        | -               |
| 0.1038 | 1750  | 0.0012        | -               |
| 0.1067 | 1800  | 0.0008        | -               |
| 0.1097 | 1850  | 0.0048        | -               |
| 0.1127 | 1900  | 0.0007        | -               |
| 0.1156 | 1950  | 0.0001        | -               |
| 0.1186 | 2000  | 0.0001        | -               |
| 0.1216 | 2050  | 0.0001        | -               |
| 0.1245 | 2100  | 0.0001        | -               |
| 0.1275 | 2150  | 0.0001        | -               |
| 0.1305 | 2200  | 0.0001        | -               |
| 0.1334 | 2250  | 0.0           | -               |
| 0.1364 | 2300  | 0.0001        | -               |
| 0.1394 | 2350  | 0.0002        | -               |
| 0.1423 | 2400  | 0.0           | -               |
| 0.1453 | 2450  | 0.0           | -               |
| 0.1482 | 2500  | 0.0589        | -               |
| 0.1512 | 2550  | 0.0036        | -               |
| 0.1542 | 2600  | 0.0013        | -               |
| 0.1571 | 2650  | 0.0           | -               |
| 0.1601 | 2700  | 0.0001        | -               |
| 0.1631 | 2750  | 0.0004        | -               |
| 0.1660 | 2800  | 0.0           | -               |
| 0.1690 | 2850  | 0.0002        | -               |
| 0.1720 | 2900  | 0.0096        | -               |
| 0.1749 | 2950  | 0.0           | -               |
| 0.1779 | 3000  | 0.0           | -               |
| 0.1809 | 3050  | 0.0001        | -               |
| 0.1838 | 3100  | 0.0           | -               |
| 0.1868 | 3150  | 0.0001        | -               |
| 0.1898 | 3200  | 0.0001        | -               |
| 0.1927 | 3250  | 0.0           | -               |
| 0.1957 | 3300  | 0.0           | -               |
| 0.1986 | 3350  | 0.0001        | -               |
| 0.2016 | 3400  | 0.0           | -               |
| 0.2046 | 3450  | 0.0002        | -               |
| 0.2075 | 3500  | 0.0           | -               |
| 0.2105 | 3550  | 0.0           | -               |
| 0.2135 | 3600  | 0.0001        | -               |
| 0.2164 | 3650  | 0.0           | -               |
| 0.2194 | 3700  | 0.0           | -               |
| 0.2224 | 3750  | 0.0001        | -               |
| 0.2253 | 3800  | 0.0           | -               |
| 0.2283 | 3850  | 0.0           | -               |
| 0.2313 | 3900  | 0.0           | -               |
| 0.2342 | 3950  | 0.0           | -               |
| 0.2372 | 4000  | 0.0           | -               |
| 0.2402 | 4050  | 0.0           | -               |
| 0.2431 | 4100  | 0.0           | -               |
| 0.2461 | 4150  | 0.0           | -               |
| 0.2491 | 4200  | 0.0           | -               |
| 0.2520 | 4250  | 0.0           | -               |
| 0.2550 | 4300  | 0.0           | -               |
| 0.2579 | 4350  | 0.0           | -               |
| 0.2609 | 4400  | 0.0           | -               |
| 0.2639 | 4450  | 0.0           | -               |
| 0.2668 | 4500  | 0.0           | -               |
| 0.2698 | 4550  | 0.0           | -               |
| 0.2728 | 4600  | 0.0           | -               |
| 0.2757 | 4650  | 0.0           | -               |
| 0.2787 | 4700  | 0.0           | -               |
| 0.2817 | 4750  | 0.0           | -               |
| 0.2846 | 4800  | 0.0           | -               |
| 0.2876 | 4850  | 0.0001        | -               |
| 0.2906 | 4900  | 0.0071        | -               |
| 0.2935 | 4950  | 0.1151        | -               |
| 0.2965 | 5000  | 0.0055        | -               |
| 0.2995 | 5050  | 0.0005        | -               |
| 0.3024 | 5100  | 0.0041        | -               |
| 0.3054 | 5150  | 0.0001        | -               |
| 0.3083 | 5200  | 0.0003        | -               |
| 0.3113 | 5250  | 0.0001        | -               |
| 0.3143 | 5300  | 0.0           | -               |
| 0.3172 | 5350  | 0.0001        | -               |
| 0.3202 | 5400  | 0.0           | -               |
| 0.3232 | 5450  | 0.0           | -               |
| 0.3261 | 5500  | 0.0           | -               |
| 0.3291 | 5550  | 0.0           | -               |
| 0.3321 | 5600  | 0.0           | -               |
| 0.3350 | 5650  | 0.0           | -               |
| 0.3380 | 5700  | 0.0           | -               |
| 0.3410 | 5750  | 0.0           | -               |
| 0.3439 | 5800  | 0.0           | -               |
| 0.3469 | 5850  | 0.0           | -               |
| 0.3499 | 5900  | 0.0           | -               |
| 0.3528 | 5950  | 0.0           | -               |
| 0.3558 | 6000  | 0.0           | -               |
| 0.3588 | 6050  | 0.0           | -               |
| 0.3617 | 6100  | 0.0           | -               |
| 0.3647 | 6150  | 0.0           | -               |
| 0.3676 | 6200  | 0.0           | -               |
| 0.3706 | 6250  | 0.0           | -               |
| 0.3736 | 6300  | 0.0           | -               |
| 0.3765 | 6350  | 0.0           | -               |
| 0.3795 | 6400  | 0.0           | -               |
| 0.3825 | 6450  | 0.0           | -               |
| 0.3854 | 6500  | 0.0           | -               |
| 0.3884 | 6550  | 0.0           | -               |
| 0.3914 | 6600  | 0.0           | -               |
| 0.3943 | 6650  | 0.0           | -               |
| 0.3973 | 6700  | 0.0           | -               |
| 0.4003 | 6750  | 0.0           | -               |
| 0.4032 | 6800  | 0.0           | -               |
| 0.4062 | 6850  | 0.0           | -               |
| 0.4092 | 6900  | 0.0           | -               |
| 0.4121 | 6950  | 0.0           | -               |
| 0.4151 | 7000  | 0.0           | -               |
| 0.4181 | 7050  | 0.0           | -               |
| 0.4210 | 7100  | 0.0           | -               |
| 0.4240 | 7150  | 0.0           | -               |
| 0.4269 | 7200  | 0.0           | -               |
| 0.4299 | 7250  | 0.0           | -               |
| 0.4329 | 7300  | 0.0           | -               |
| 0.4358 | 7350  | 0.0           | -               |
| 0.4388 | 7400  | 0.0           | -               |
| 0.4418 | 7450  | 0.0           | -               |
| 0.4447 | 7500  | 0.0           | -               |
| 0.4477 | 7550  | 0.0           | -               |
| 0.4507 | 7600  | 0.0           | -               |
| 0.4536 | 7650  | 0.0003        | -               |
| 0.4566 | 7700  | 0.0           | -               |
| 0.4596 | 7750  | 0.0           | -               |
| 0.4625 | 7800  | 0.0           | -               |
| 0.4655 | 7850  | 0.0           | -               |
| 0.4685 | 7900  | 0.0           | -               |
| 0.4714 | 7950  | 0.0           | -               |
| 0.4744 | 8000  | 0.0           | -               |
| 0.4773 | 8050  | 0.0           | -               |
| 0.4803 | 8100  | 0.0           | -               |
| 0.4833 | 8150  | 0.0           | -               |
| 0.4862 | 8200  | 0.0           | -               |
| 0.4892 | 8250  | 0.0           | -               |
| 0.4922 | 8300  | 0.0           | -               |
| 0.4951 | 8350  | 0.0           | -               |
| 0.4981 | 8400  | 0.0           | -               |
| 0.5011 | 8450  | 0.0           | -               |
| 0.5040 | 8500  | 0.0           | -               |
| 0.5070 | 8550  | 0.0           | -               |
| 0.5100 | 8600  | 0.0           | -               |
| 0.5129 | 8650  | 0.0           | -               |
| 0.5159 | 8700  | 0.0           | -               |
| 0.5189 | 8750  | 0.0           | -               |
| 0.5218 | 8800  | 0.0           | -               |
| 0.5248 | 8850  | 0.0           | -               |
| 0.5278 | 8900  | 0.0           | -               |
| 0.5307 | 8950  | 0.0           | -               |
| 0.5337 | 9000  | 0.0           | -               |
| 0.5366 | 9050  | 0.0           | -               |
| 0.5396 | 9100  | 0.0           | -               |
| 0.5426 | 9150  | 0.0           | -               |
| 0.5455 | 9200  | 0.0           | -               |
| 0.5485 | 9250  | 0.0           | -               |
| 0.5515 | 9300  | 0.0           | -               |
| 0.5544 | 9350  | 0.0           | -               |
| 0.5574 | 9400  | 0.0           | -               |
| 0.5604 | 9450  | 0.0           | -               |
| 0.5633 | 9500  | 0.0           | -               |
| 0.5663 | 9550  | 0.0           | -               |
| 0.5693 | 9600  | 0.0           | -               |
| 0.5722 | 9650  | 0.0           | -               |
| 0.5752 | 9700  | 0.0           | -               |
| 0.5782 | 9750  | 0.0           | -               |
| 0.5811 | 9800  | 0.0           | -               |
| 0.5841 | 9850  | 0.0           | -               |
| 0.5870 | 9900  | 0.0           | -               |
| 0.5900 | 9950  | 0.0           | -               |
| 0.5930 | 10000 | 0.0           | -               |
| 0.5959 | 10050 | 0.0           | -               |
| 0.5989 | 10100 | 0.0           | -               |
| 0.6019 | 10150 | 0.0           | -               |
| 0.6048 | 10200 | 0.0           | -               |
| 0.6078 | 10250 | 0.0           | -               |
| 0.6108 | 10300 | 0.0           | -               |
| 0.6137 | 10350 | 0.0           | -               |
| 0.6167 | 10400 | 0.0           | -               |
| 0.6197 | 10450 | 0.0           | -               |
| 0.6226 | 10500 | 0.0           | -               |
| 0.6256 | 10550 | 0.0           | -               |
| 0.6286 | 10600 | 0.0           | -               |
| 0.6315 | 10650 | 0.0           | -               |
| 0.6345 | 10700 | 0.0           | -               |
| 0.6375 | 10750 | 0.0           | -               |
| 0.6404 | 10800 | 0.0           | -               |
| 0.6434 | 10850 | 0.0           | -               |
| 0.6463 | 10900 | 0.0           | -               |
| 0.6493 | 10950 | 0.0           | -               |
| 0.6523 | 11000 | 0.0           | -               |
| 0.6552 | 11050 | 0.0           | -               |
| 0.6582 | 11100 | 0.0           | -               |
| 0.6612 | 11150 | 0.0           | -               |
| 0.6641 | 11200 | 0.0           | -               |
| 0.6671 | 11250 | 0.0           | -               |
| 0.6701 | 11300 | 0.0           | -               |
| 0.6730 | 11350 | 0.0           | -               |
| 0.6760 | 11400 | 0.0           | -               |
| 0.6790 | 11450 | 0.0           | -               |
| 0.6819 | 11500 | 0.0           | -               |
| 0.6849 | 11550 | 0.0           | -               |
| 0.6879 | 11600 | 0.0           | -               |
| 0.6908 | 11650 | 0.0           | -               |
| 0.6938 | 11700 | 0.0           | -               |
| 0.6968 | 11750 | 0.0           | -               |
| 0.6997 | 11800 | 0.0           | -               |
| 0.7027 | 11850 | 0.0           | -               |
| 0.7056 | 11900 | 0.0           | -               |
| 0.7086 | 11950 | 0.0           | -               |
| 0.7116 | 12000 | 0.0           | -               |
| 0.7145 | 12050 | 0.0           | -               |
| 0.7175 | 12100 | 0.0           | -               |
| 0.7205 | 12150 | 0.0           | -               |
| 0.7234 | 12200 | 0.0           | -               |
| 0.7264 | 12250 | 0.0           | -               |
| 0.7294 | 12300 | 0.0           | -               |
| 0.7323 | 12350 | 0.0           | -               |
| 0.7353 | 12400 | 0.0           | -               |
| 0.7383 | 12450 | 0.0           | -               |
| 0.7412 | 12500 | 0.0           | -               |
| 0.7442 | 12550 | 0.0           | -               |
| 0.7472 | 12600 | 0.0           | -               |
| 0.7501 | 12650 | 0.0           | -               |
| 0.7531 | 12700 | 0.0           | -               |
| 0.7560 | 12750 | 0.0           | -               |
| 0.7590 | 12800 | 0.0           | -               |
| 0.7620 | 12850 | 0.0           | -               |
| 0.7649 | 12900 | 0.0           | -               |
| 0.7679 | 12950 | 0.0           | -               |
| 0.7709 | 13000 | 0.0           | -               |
| 0.7738 | 13050 | 0.0           | -               |
| 0.7768 | 13100 | 0.0           | -               |
| 0.7798 | 13150 | 0.0           | -               |
| 0.7827 | 13200 | 0.0           | -               |
| 0.7857 | 13250 | 0.0           | -               |
| 0.7887 | 13300 | 0.0           | -               |
| 0.7916 | 13350 | 0.0           | -               |
| 0.7946 | 13400 | 0.0           | -               |
| 0.7976 | 13450 | 0.0           | -               |
| 0.8005 | 13500 | 0.0           | -               |
| 0.8035 | 13550 | 0.0           | -               |
| 0.8065 | 13600 | 0.0           | -               |
| 0.8094 | 13650 | 0.0           | -               |
| 0.8124 | 13700 | 0.0           | -               |
| 0.8153 | 13750 | 0.0           | -               |
| 0.8183 | 13800 | 0.0           | -               |
| 0.8213 | 13850 | 0.0           | -               |
| 0.8242 | 13900 | 0.0           | -               |
| 0.8272 | 13950 | 0.0           | -               |
| 0.8302 | 14000 | 0.0           | -               |
| 0.8331 | 14050 | 0.0           | -               |
| 0.8361 | 14100 | 0.0           | -               |
| 0.8391 | 14150 | 0.0           | -               |
| 0.8420 | 14200 | 0.0           | -               |
| 0.8450 | 14250 | 0.0           | -               |
| 0.8480 | 14300 | 0.0           | -               |
| 0.8509 | 14350 | 0.0           | -               |
| 0.8539 | 14400 | 0.0           | -               |
| 0.8569 | 14450 | 0.0           | -               |
| 0.8598 | 14500 | 0.0           | -               |
| 0.8628 | 14550 | 0.0           | -               |
| 0.8657 | 14600 | 0.0           | -               |
| 0.8687 | 14650 | 0.0           | -               |
| 0.8717 | 14700 | 0.0           | -               |
| 0.8746 | 14750 | 0.0           | -               |
| 0.8776 | 14800 | 0.0           | -               |
| 0.8806 | 14850 | 0.0           | -               |
| 0.8835 | 14900 | 0.0           | -               |
| 0.8865 | 14950 | 0.0           | -               |
| 0.8895 | 15000 | 0.0           | -               |
| 0.8924 | 15050 | 0.0           | -               |
| 0.8954 | 15100 | 0.0           | -               |
| 0.8984 | 15150 | 0.0           | -               |
| 0.9013 | 15200 | 0.0           | -               |
| 0.9043 | 15250 | 0.0           | -               |
| 0.9073 | 15300 | 0.0           | -               |
| 0.9102 | 15350 | 0.0           | -               |
| 0.9132 | 15400 | 0.0           | -               |
| 0.9162 | 15450 | 0.0           | -               |
| 0.9191 | 15500 | 0.0           | -               |
| 0.9221 | 15550 | 0.0           | -               |
| 0.9250 | 15600 | 0.0           | -               |
| 0.9280 | 15650 | 0.0           | -               |
| 0.9310 | 15700 | 0.0           | -               |
| 0.9339 | 15750 | 0.0           | -               |
| 0.9369 | 15800 | 0.0           | -               |
| 0.9399 | 15850 | 0.0           | -               |
| 0.9428 | 15900 | 0.0           | -               |
| 0.9458 | 15950 | 0.0           | -               |
| 0.9488 | 16000 | 0.0           | -               |
| 0.9517 | 16050 | 0.0           | -               |
| 0.9547 | 16100 | 0.0           | -               |
| 0.9577 | 16150 | 0.0           | -               |
| 0.9606 | 16200 | 0.0           | -               |
| 0.9636 | 16250 | 0.0           | -               |
| 0.9666 | 16300 | 0.0           | -               |
| 0.9695 | 16350 | 0.0           | -               |
| 0.9725 | 16400 | 0.0           | -               |
| 0.9755 | 16450 | 0.0           | -               |
| 0.9784 | 16500 | 0.0           | -               |
| 0.9814 | 16550 | 0.0           | -               |
| 0.9843 | 16600 | 0.0           | -               |
| 0.9873 | 16650 | 0.0           | -               |
| 0.9903 | 16700 | 0.0           | -               |
| 0.9932 | 16750 | 0.0           | -               |
| 0.9962 | 16800 | 0.0           | -               |
| 0.9992 | 16850 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->