marcelomoreno26 commited on
Commit
b26ba35
·
verified ·
1 Parent(s): bb2c328

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: netbook:I am not going to sit here and complain about it not having a cd drive
14
+ and what not because it is a netbook, it is made to be compact and if you want
15
+ all the other stuff get a laptop.
16
+ - text: price:I finally decided on this laptop because it was the right price for
17
+ what I need it.
18
+ - text: shipped:This laptop looked brand new and was shipped very quickly.
19
+ - text: business:They offer the best warranty in the business, and don't 3rd party
20
+ it out like Toshiba.
21
+ - text: email:My husband uses it mostly for games, email and music.
22
+ pipeline_tag: text-classification
23
+ inference: false
24
+ model-index:
25
+ - name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.8947936336660373
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ This model was trained within the context of a larger system for ABSA, which looks like so:
50
+
51
+ 1. Use a spaCy model to select possible aspect span candidates.
52
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
53
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** SetFit
59
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
60
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
61
+ - **spaCy Model:** en_core_web_sm
62
+ - **SetFitABSA Aspect Model:** [marcelomoreno26/all-MiniLM-L6-v2-absa-aspect2](https://huggingface.co/marcelomoreno26/all-MiniLM-L6-v2-absa-aspect2)
63
+ - **SetFitABSA Polarity Model:** [setfit-absa-polarity](https://huggingface.co/setfit-absa-polarity)
64
+ - **Maximum Sequence Length:** 256 tokens
65
+ - **Number of Classes:** 2 classes
66
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
67
+ <!-- - **Language:** Unknown -->
68
+ <!-- - **License:** Unknown -->
69
+
70
+ ### Model Sources
71
+
72
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
73
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
74
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
75
+
76
+ ### Model Labels
77
+ | Label | Examples |
78
+ |:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
79
+ | aspect | <ul><li>'cord:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'battery life:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'service center:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li></ul> |
80
+ | no aspect | <ul><li>'night:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'skip:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'exchange:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li></ul> |
81
+
82
+ ## Evaluation
83
+
84
+ ### Metrics
85
+ | Label | Accuracy |
86
+ |:--------|:---------|
87
+ | **all** | 0.8948 |
88
+
89
+ ## Uses
90
+
91
+ ### Direct Use for Inference
92
+
93
+ First install the SetFit library:
94
+
95
+ ```bash
96
+ pip install setfit
97
+ ```
98
+
99
+ Then you can load this model and run inference.
100
+
101
+ ```python
102
+ from setfit import AbsaModel
103
+
104
+ # Download from the 🤗 Hub
105
+ model = AbsaModel.from_pretrained(
106
+ "marcelomoreno26/all-MiniLM-L6-v2-absa-aspect2",
107
+ "setfit-absa-polarity",
108
+ )
109
+ # Run inference
110
+ preds = model("The food was great, but the venue is just way too busy.")
111
+ ```
112
+
113
+ <!--
114
+ ### Downstream Use
115
+
116
+ *List how someone could finetune this model on their own dataset.*
117
+ -->
118
+
119
+ <!--
120
+ ### Out-of-Scope Use
121
+
122
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
123
+ -->
124
+
125
+ <!--
126
+ ## Bias, Risks and Limitations
127
+
128
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
129
+ -->
130
+
131
+ <!--
132
+ ### Recommendations
133
+
134
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
135
+ -->
136
+
137
+ ## Training Details
138
+
139
+ ### Training Set Metrics
140
+ | Training set | Min | Median | Max |
141
+ |:-------------|:----|:--------|:----|
142
+ | Word count | 2 | 21.9670 | 75 |
143
+
144
+ | Label | Training Sample Count |
145
+ |:----------|:----------------------|
146
+ | no aspect | 690 |
147
+ | aspect | 644 |
148
+
149
+ ### Training Hyperparameters
150
+ - batch_size: (16, 2)
151
+ - num_epochs: (1, 16)
152
+ - max_steps: -1
153
+ - sampling_strategy: oversampling
154
+ - body_learning_rate: (2e-05, 1e-05)
155
+ - head_learning_rate: 0.01
156
+ - loss: CosineSimilarityLoss
157
+ - distance_metric: cosine_distance
158
+ - margin: 0.25
159
+ - end_to_end: False
160
+ - use_amp: False
161
+ - warmup_proportion: 0.1
162
+ - seed: 42
163
+ - eval_max_steps: -1
164
+ - load_best_model_at_end: False
165
+
166
+ ### Training Results
167
+ | Epoch | Step | Training Loss | Validation Loss |
168
+ |:------:|:-----:|:-------------:|:---------------:|
169
+ | 0.0000 | 1 | 0.3662 | - |
170
+ | 0.0015 | 50 | 0.3374 | - |
171
+ | 0.0029 | 100 | 0.3411 | - |
172
+ | 0.0044 | 150 | 0.2945 | - |
173
+ | 0.0059 | 200 | 0.2944 | - |
174
+ | 0.0073 | 250 | 0.2942 | - |
175
+ | 0.0088 | 300 | 0.2409 | - |
176
+ | 0.0103 | 350 | 0.2817 | - |
177
+ | 0.0118 | 400 | 0.3149 | - |
178
+ | 0.0132 | 450 | 0.2618 | - |
179
+ | 0.0147 | 500 | 0.247 | - |
180
+ | 0.0162 | 550 | 0.2883 | - |
181
+ | 0.0176 | 600 | 0.2783 | - |
182
+ | 0.0191 | 650 | 0.2418 | - |
183
+ | 0.0206 | 700 | 0.2938 | - |
184
+ | 0.0220 | 750 | 0.2376 | - |
185
+ | 0.0235 | 800 | 0.2652 | - |
186
+ | 0.0250 | 850 | 0.2442 | - |
187
+ | 0.0265 | 900 | 0.2678 | - |
188
+ | 0.0279 | 950 | 0.2216 | - |
189
+ | 0.0294 | 1000 | 0.1816 | - |
190
+ | 0.0309 | 1050 | 0.1102 | - |
191
+ | 0.0323 | 1100 | 0.2985 | - |
192
+ | 0.0338 | 1150 | 0.1124 | - |
193
+ | 0.0353 | 1200 | 0.1075 | - |
194
+ | 0.0367 | 1250 | 0.0819 | - |
195
+ | 0.0382 | 1300 | 0.1238 | - |
196
+ | 0.0397 | 1350 | 0.0529 | - |
197
+ | 0.0412 | 1400 | 0.026 | - |
198
+ | 0.0426 | 1450 | 0.0289 | - |
199
+ | 0.0441 | 1500 | 0.067 | - |
200
+ | 0.0456 | 1550 | 0.0276 | - |
201
+ | 0.0470 | 1600 | 0.0162 | - |
202
+ | 0.0485 | 1650 | 0.0083 | - |
203
+ | 0.0500 | 1700 | 0.0017 | - |
204
+ | 0.0514 | 1750 | 0.0028 | - |
205
+ | 0.0529 | 1800 | 0.0045 | - |
206
+ | 0.0544 | 1850 | 0.0022 | - |
207
+ | 0.0558 | 1900 | 0.0014 | - |
208
+ | 0.0573 | 1950 | 0.0059 | - |
209
+ | 0.0588 | 2000 | 0.0019 | - |
210
+ | 0.0603 | 2050 | 0.0014 | - |
211
+ | 0.0617 | 2100 | 0.0022 | - |
212
+ | 0.0632 | 2150 | 0.0005 | - |
213
+ | 0.0647 | 2200 | 0.0008 | - |
214
+ | 0.0661 | 2250 | 0.0005 | - |
215
+ | 0.0676 | 2300 | 0.0006 | - |
216
+ | 0.0691 | 2350 | 0.0003 | - |
217
+ | 0.0705 | 2400 | 0.0007 | - |
218
+ | 0.0720 | 2450 | 0.0005 | - |
219
+ | 0.0735 | 2500 | 0.0005 | - |
220
+ | 0.0750 | 2550 | 0.0612 | - |
221
+ | 0.0764 | 2600 | 0.0004 | - |
222
+ | 0.0779 | 2650 | 0.041 | - |
223
+ | 0.0794 | 2700 | 0.0002 | - |
224
+ | 0.0808 | 2750 | 0.0003 | - |
225
+ | 0.0823 | 2800 | 0.0002 | - |
226
+ | 0.0838 | 2850 | 0.0002 | - |
227
+ | 0.0852 | 2900 | 0.0002 | - |
228
+ | 0.0867 | 2950 | 0.0004 | - |
229
+ | 0.0882 | 3000 | 0.0006 | - |
230
+ | 0.0897 | 3050 | 0.0601 | - |
231
+ | 0.0911 | 3100 | 0.0002 | - |
232
+ | 0.0926 | 3150 | 0.0108 | - |
233
+ | 0.0941 | 3200 | 0.0003 | - |
234
+ | 0.0955 | 3250 | 0.0363 | - |
235
+ | 0.0970 | 3300 | 0.0006 | - |
236
+ | 0.0985 | 3350 | 0.0002 | - |
237
+ | 0.0999 | 3400 | 0.0033 | - |
238
+ | 0.1014 | 3450 | 0.0002 | - |
239
+ | 0.1029 | 3500 | 0.0002 | - |
240
+ | 0.1044 | 3550 | 0.0006 | - |
241
+ | 0.1058 | 3600 | 0.0002 | - |
242
+ | 0.1073 | 3650 | 0.0002 | - |
243
+ | 0.1088 | 3700 | 0.0001 | - |
244
+ | 0.1102 | 3750 | 0.0002 | - |
245
+ | 0.1117 | 3800 | 0.0002 | - |
246
+ | 0.1132 | 3850 | 0.0004 | - |
247
+ | 0.1146 | 3900 | 0.0003 | - |
248
+ | 0.1161 | 3950 | 0.0001 | - |
249
+ | 0.1176 | 4000 | 0.0004 | - |
250
+ | 0.1190 | 4050 | 0.0003 | - |
251
+ | 0.1205 | 4100 | 0.001 | - |
252
+ | 0.1220 | 4150 | 0.0002 | - |
253
+ | 0.1235 | 4200 | 0.0001 | - |
254
+ | 0.1249 | 4250 | 0.0003 | - |
255
+ | 0.1264 | 4300 | 0.0003 | - |
256
+ | 0.1279 | 4350 | 0.0002 | - |
257
+ | 0.1293 | 4400 | 0.0001 | - |
258
+ | 0.1308 | 4450 | 0.0001 | - |
259
+ | 0.1323 | 4500 | 0.0001 | - |
260
+ | 0.1337 | 4550 | 0.0001 | - |
261
+ | 0.1352 | 4600 | 0.0001 | - |
262
+ | 0.1367 | 4650 | 0.0003 | - |
263
+ | 0.1382 | 4700 | 0.0006 | - |
264
+ | 0.1396 | 4750 | 0.0003 | - |
265
+ | 0.1411 | 4800 | 0.0001 | - |
266
+ | 0.1426 | 4850 | 0.0011 | - |
267
+ | 0.1440 | 4900 | 0.0001 | - |
268
+ | 0.1455 | 4950 | 0.0001 | - |
269
+ | 0.1470 | 5000 | 0.0001 | - |
270
+ | 0.1484 | 5050 | 0.0001 | - |
271
+ | 0.1499 | 5100 | 0.0002 | - |
272
+ | 0.1514 | 5150 | 0.0497 | - |
273
+ | 0.1529 | 5200 | 0.0002 | - |
274
+ | 0.1543 | 5250 | 0.0001 | - |
275
+ | 0.1558 | 5300 | 0.0008 | - |
276
+ | 0.1573 | 5350 | 0.0001 | - |
277
+ | 0.1587 | 5400 | 0.0002 | - |
278
+ | 0.1602 | 5450 | 0.0001 | - |
279
+ | 0.1617 | 5500 | 0.0003 | - |
280
+ | 0.1631 | 5550 | 0.0003 | - |
281
+ | 0.1646 | 5600 | 0.0004 | - |
282
+ | 0.1661 | 5650 | 0.0002 | - |
283
+ | 0.1675 | 5700 | 0.0002 | - |
284
+ | 0.1690 | 5750 | 0.0001 | - |
285
+ | 0.1705 | 5800 | 0.0001 | - |
286
+ | 0.1720 | 5850 | 0.0001 | - |
287
+ | 0.1734 | 5900 | 0.0004 | - |
288
+ | 0.1749 | 5950 | 0.0001 | - |
289
+ | 0.1764 | 6000 | 0.0001 | - |
290
+ | 0.1778 | 6050 | 0.0001 | - |
291
+ | 0.125 | 1 | 0.0002 | - |
292
+ | 0.5 | 4 | 0.0003 | - |
293
+ | 1.0 | 8 | 0.0 | - |
294
+ | 0.0000 | 1 | 0.0001 | - |
295
+ | 0.0015 | 50 | 0.0001 | - |
296
+ | 0.0029 | 100 | 0.0 | - |
297
+ | 0.0044 | 150 | 0.0001 | - |
298
+ | 0.125 | 1 | 0.0 | - |
299
+ | 0.5 | 4 | 0.0 | - |
300
+ | 0.0000 | 1 | 0.0003 | - |
301
+ | 0.0009 | 50 | 0.0003 | - |
302
+ | 0.0018 | 100 | 0.0003 | - |
303
+ | 0.0027 | 150 | 0.0001 | - |
304
+ | 0.0036 | 200 | 0.0001 | - |
305
+ | 0.0045 | 250 | 0.1015 | - |
306
+ | 0.0054 | 300 | 0.0005 | - |
307
+ | 0.0063 | 350 | 0.0579 | - |
308
+ | 0.0072 | 400 | 0.0001 | - |
309
+ | 0.0081 | 450 | 0.0897 | - |
310
+ | 0.0090 | 500 | 0.0618 | - |
311
+ | 0.0099 | 550 | 0.0002 | - |
312
+ | 0.0108 | 600 | 0.0001 | - |
313
+ | 0.0117 | 650 | 0.0004 | - |
314
+ | 0.0126 | 700 | 0.0002 | - |
315
+ | 0.0135 | 750 | 0.0002 | - |
316
+ | 0.0143 | 800 | 0.0001 | - |
317
+ | 0.0152 | 850 | 0.062 | - |
318
+ | 0.0161 | 900 | 0.0004 | - |
319
+ | 0.0170 | 950 | 0.0002 | - |
320
+ | 0.0179 | 1000 | 0.0001 | - |
321
+ | 0.0188 | 1050 | 0.0628 | - |
322
+ | 0.0197 | 1100 | 0.0003 | - |
323
+ | 0.0206 | 1150 | 0.0003 | - |
324
+ | 0.0215 | 1200 | 0.0001 | - |
325
+ | 0.0224 | 1250 | 0.0001 | - |
326
+ | 0.0233 | 1300 | 0.0001 | - |
327
+ | 0.0000 | 1 | 0.0002 | - |
328
+ | 0.0009 | 50 | 0.0002 | - |
329
+ | 0.0018 | 100 | 0.0001 | - |
330
+ | 0.0027 | 150 | 0.0001 | - |
331
+ | 0.0036 | 200 | 0.0001 | - |
332
+ | 0.0045 | 250 | 0.0002 | - |
333
+ | 0.0054 | 300 | 0.0001 | - |
334
+ | 0.0063 | 350 | 0.0002 | - |
335
+ | 0.0072 | 400 | 0.0002 | - |
336
+ | 0.0081 | 450 | 0.0262 | - |
337
+ | 0.0090 | 500 | 0.0001 | - |
338
+ | 0.0099 | 550 | 0.0002 | - |
339
+ | 0.0108 | 600 | 0.0001 | - |
340
+ | 0.0117 | 650 | 0.0001 | - |
341
+ | 0.0126 | 700 | 0.0001 | - |
342
+ | 0.0135 | 750 | 0.0001 | - |
343
+ | 0.0143 | 800 | 0.0001 | - |
344
+ | 0.0152 | 850 | 0.0002 | - |
345
+ | 0.0161 | 900 | 0.0001 | - |
346
+ | 0.0170 | 950 | 0.0001 | - |
347
+ | 0.0179 | 1000 | 0.0001 | - |
348
+ | 0.0188 | 1050 | 0.06 | - |
349
+ | 0.0197 | 1100 | 0.0001 | - |
350
+ | 0.0206 | 1150 | 0.0001 | - |
351
+ | 0.0215 | 1200 | 0.0001 | - |
352
+ | 0.0224 | 1250 | 0.0001 | - |
353
+ | 0.0233 | 1300 | 0.0001 | - |
354
+ | 0.0242 | 1350 | 0.0001 | - |
355
+ | 0.0251 | 1400 | 0.0001 | - |
356
+ | 0.0260 | 1450 | 0.0001 | - |
357
+ | 0.0269 | 1500 | 0.0002 | - |
358
+ | 0.0278 | 1550 | 0.0001 | - |
359
+ | 0.0287 | 1600 | 0.0001 | - |
360
+ | 0.0296 | 1650 | 0.0125 | - |
361
+ | 0.0305 | 1700 | 0.0001 | - |
362
+ | 0.0314 | 1750 | 0.0001 | - |
363
+ | 0.0323 | 1800 | 0.0001 | - |
364
+ | 0.0332 | 1850 | 0.0001 | - |
365
+ | 0.0341 | 1900 | 0.0001 | - |
366
+ | 0.0350 | 1950 | 0.0001 | - |
367
+ | 0.0359 | 2000 | 0.0001 | - |
368
+ | 0.0368 | 2050 | 0.0001 | - |
369
+ | 0.0377 | 2100 | 0.0002 | - |
370
+ | 0.0386 | 2150 | 0.0001 | - |
371
+ | 0.0395 | 2200 | 0.0001 | - |
372
+ | 0.0404 | 2250 | 0.0407 | - |
373
+ | 0.0412 | 2300 | 0.0001 | - |
374
+ | 0.0421 | 2350 | 0.0001 | - |
375
+ | 0.0430 | 2400 | 0.0001 | - |
376
+ | 0.0439 | 2450 | 0.0001 | - |
377
+ | 0.0448 | 2500 | 0.0001 | - |
378
+ | 0.0457 | 2550 | 0.0 | - |
379
+ | 0.0466 | 2600 | 0.0 | - |
380
+ | 0.0475 | 2650 | 0.0001 | - |
381
+ | 0.0484 | 2700 | 0.0 | - |
382
+ | 0.0493 | 2750 | 0.0001 | - |
383
+ | 0.0502 | 2800 | 0.0001 | - |
384
+ | 0.0511 | 2850 | 0.0001 | - |
385
+ | 0.0520 | 2900 | 0.0001 | - |
386
+ | 0.0529 | 2950 | 0.0002 | - |
387
+ | 0.0538 | 3000 | 0.0001 | - |
388
+ | 0.0547 | 3050 | 0.0001 | - |
389
+ | 0.0556 | 3100 | 0.0001 | - |
390
+ | 0.0565 | 3150 | 0.0001 | - |
391
+ | 0.0574 | 3200 | 0.0 | - |
392
+ | 0.0583 | 3250 | 0.0 | - |
393
+ | 0.0592 | 3300 | 0.0 | - |
394
+ | 0.0601 | 3350 | 0.0001 | - |
395
+ | 0.0610 | 3400 | 0.0 | - |
396
+ | 0.0619 | 3450 | 0.0 | - |
397
+ | 0.0628 | 3500 | 0.0001 | - |
398
+ | 0.0637 | 3550 | 0.0001 | - |
399
+ | 0.0646 | 3600 | 0.0 | - |
400
+ | 0.0655 | 3650 | 0.0001 | - |
401
+ | 0.0664 | 3700 | 0.0 | - |
402
+ | 0.0673 | 3750 | 0.0001 | - |
403
+ | 0.0681 | 3800 | 0.0 | - |
404
+ | 0.0690 | 3850 | 0.0005 | - |
405
+ | 0.0699 | 3900 | 0.0001 | - |
406
+ | 0.0708 | 3950 | 0.0001 | - |
407
+ | 0.0717 | 4000 | 0.0 | - |
408
+ | 0.0726 | 4050 | 0.0001 | - |
409
+ | 0.0735 | 4100 | 0.0009 | - |
410
+ | 0.0744 | 4150 | 0.0001 | - |
411
+ | 0.0753 | 4200 | 0.0001 | - |
412
+ | 0.0762 | 4250 | 0.0001 | - |
413
+ | 0.0771 | 4300 | 0.0 | - |
414
+ | 0.0780 | 4350 | 0.0001 | - |
415
+ | 0.0789 | 4400 | 0.0001 | - |
416
+ | 0.0798 | 4450 | 0.0001 | - |
417
+ | 0.0807 | 4500 | 0.0 | - |
418
+ | 0.0816 | 4550 | 0.0 | - |
419
+ | 0.0825 | 4600 | 0.0001 | - |
420
+ | 0.0834 | 4650 | 0.0 | - |
421
+ | 0.0843 | 4700 | 0.0 | - |
422
+ | 0.0852 | 4750 | 0.0 | - |
423
+ | 0.0861 | 4800 | 0.0 | - |
424
+ | 0.0870 | 4850 | 0.0 | - |
425
+ | 0.0879 | 4900 | 0.0004 | - |
426
+ | 0.0888 | 4950 | 0.0002 | - |
427
+ | 0.0897 | 5000 | 0.0001 | - |
428
+ | 0.0906 | 5050 | 0.0001 | - |
429
+ | 0.0915 | 5100 | 0.0 | - |
430
+ | 0.0924 | 5150 | 0.0026 | - |
431
+ | 0.0933 | 5200 | 0.0549 | - |
432
+ | 0.0942 | 5250 | 0.0001 | - |
433
+ | 0.0950 | 5300 | 0.0011 | - |
434
+ | 0.0959 | 5350 | 0.0 | - |
435
+ | 0.0968 | 5400 | 0.0 | - |
436
+ | 0.0977 | 5450 | 0.0 | - |
437
+ | 0.0986 | 5500 | 0.0002 | - |
438
+ | 0.0995 | 5550 | 0.0001 | - |
439
+ | 0.1004 | 5600 | 0.0 | - |
440
+ | 0.1013 | 5650 | 0.0001 | - |
441
+ | 0.1022 | 5700 | 0.0001 | - |
442
+ | 0.1031 | 5750 | 0.0 | - |
443
+ | 0.1040 | 5800 | 0.0 | - |
444
+ | 0.1049 | 5850 | 0.0 | - |
445
+ | 0.1058 | 5900 | 0.0203 | - |
446
+ | 0.1067 | 5950 | 0.0001 | - |
447
+ | 0.1076 | 6000 | 0.0 | - |
448
+ | 0.1085 | 6050 | 0.0 | - |
449
+ | 0.1094 | 6100 | 0.0 | - |
450
+ | 0.1103 | 6150 | 0.0 | - |
451
+ | 0.1112 | 6200 | 0.0001 | - |
452
+ | 0.1121 | 6250 | 0.0 | - |
453
+ | 0.1130 | 6300 | 0.0 | - |
454
+ | 0.1139 | 6350 | 0.0 | - |
455
+ | 0.1148 | 6400 | 0.0 | - |
456
+ | 0.1157 | 6450 | 0.0164 | - |
457
+ | 0.1166 | 6500 | 0.0001 | - |
458
+ | 0.1175 | 6550 | 0.0 | - |
459
+ | 0.1184 | 6600 | 0.0001 | - |
460
+ | 0.1193 | 6650 | 0.0002 | - |
461
+ | 0.1202 | 6700 | 0.0001 | - |
462
+ | 0.1211 | 6750 | 0.0 | - |
463
+ | 0.1219 | 6800 | 0.0 | - |
464
+ | 0.1228 | 6850 | 0.0 | - |
465
+ | 0.1237 | 6900 | 0.0 | - |
466
+ | 0.1246 | 6950 | 0.0 | - |
467
+ | 0.1255 | 7000 | 0.0001 | - |
468
+ | 0.1264 | 7050 | 0.0 | - |
469
+ | 0.1273 | 7100 | 0.0 | - |
470
+ | 0.1282 | 7150 | 0.0 | - |
471
+ | 0.1291 | 7200 | 0.0002 | - |
472
+ | 0.1300 | 7250 | 0.0 | - |
473
+ | 0.1309 | 7300 | 0.0 | - |
474
+ | 0.1318 | 7350 | 0.0 | - |
475
+ | 0.1327 | 7400 | 0.0 | - |
476
+ | 0.1336 | 7450 | 0.0 | - |
477
+ | 0.1345 | 7500 | 0.0002 | - |
478
+ | 0.1354 | 7550 | 0.0 | - |
479
+ | 0.1363 | 7600 | 0.0 | - |
480
+ | 0.1372 | 7650 | 0.0001 | - |
481
+ | 0.1381 | 7700 | 0.0001 | - |
482
+ | 0.1390 | 7750 | 0.0001 | - |
483
+ | 0.1399 | 7800 | 0.0001 | - |
484
+ | 0.1408 | 7850 | 0.0 | - |
485
+ | 0.1417 | 7900 | 0.0 | - |
486
+ | 0.1426 | 7950 | 0.0 | - |
487
+ | 0.1435 | 8000 | 0.0142 | - |
488
+ | 0.1444 | 8050 | 0.0001 | - |
489
+ | 0.1453 | 8100 | 0.0 | - |
490
+ | 0.1462 | 8150 | 0.0002 | - |
491
+ | 0.1471 | 8200 | 0.0 | - |
492
+ | 0.1480 | 8250 | 0.0 | - |
493
+ | 0.1488 | 8300 | 0.0 | - |
494
+ | 0.1497 | 8350 | 0.0 | - |
495
+ | 0.1506 | 8400 | 0.0003 | - |
496
+ | 0.1515 | 8450 | 0.0 | - |
497
+ | 0.1524 | 8500 | 0.0 | - |
498
+ | 0.1533 | 8550 | 0.0 | - |
499
+ | 0.1542 | 8600 | 0.0 | - |
500
+ | 0.1551 | 8650 | 0.0 | - |
501
+ | 0.1560 | 8700 | 0.0 | - |
502
+ | 0.1569 | 8750 | 0.0 | - |
503
+ | 0.1578 | 8800 | 0.0 | - |
504
+ | 0.1587 | 8850 | 0.0 | - |
505
+ | 0.1596 | 8900 | 0.0 | - |
506
+ | 0.1605 | 8950 | 0.0 | - |
507
+ | 0.1614 | 9000 | 0.0 | - |
508
+ | 0.1623 | 9050 | 0.0 | - |
509
+ | 0.1632 | 9100 | 0.0 | - |
510
+ | 0.1641 | 9150 | 0.0 | - |
511
+ | 0.1650 | 9200 | 0.0 | - |
512
+ | 0.1659 | 9250 | 0.0001 | - |
513
+ | 0.1668 | 9300 | 0.0 | - |
514
+ | 0.1677 | 9350 | 0.0 | - |
515
+ | 0.1686 | 9400 | 0.0 | - |
516
+ | 0.1695 | 9450 | 0.0 | - |
517
+ | 0.1704 | 9500 | 0.0 | - |
518
+ | 0.1713 | 9550 | 0.0 | - |
519
+ | 0.1722 | 9600 | 0.0 | - |
520
+ | 0.1731 | 9650 | 0.0 | - |
521
+ | 0.1740 | 9700 | 0.0 | - |
522
+ | 0.1749 | 9750 | 0.0 | - |
523
+ | 0.1758 | 9800 | 0.0 | - |
524
+ | 0.1766 | 9850 | 0.0 | - |
525
+ | 0.1775 | 9900 | 0.0 | - |
526
+ | 0.1784 | 9950 | 0.0 | - |
527
+ | 0.1793 | 10000 | 0.0 | - |
528
+ | 0.1802 | 10050 | 0.0097 | - |
529
+ | 0.1811 | 10100 | 0.0 | - |
530
+ | 0.1820 | 10150 | 0.0 | - |
531
+ | 0.1829 | 10200 | 0.0 | - |
532
+ | 0.1838 | 10250 | 0.0 | - |
533
+ | 0.1847 | 10300 | 0.0001 | - |
534
+ | 0.1856 | 10350 | 0.0 | - |
535
+ | 0.1865 | 10400 | 0.0 | - |
536
+ | 0.1874 | 10450 | 0.0 | - |
537
+ | 0.1883 | 10500 | 0.0 | - |
538
+ | 0.1892 | 10550 | 0.0 | - |
539
+ | 0.1901 | 10600 | 0.0 | - |
540
+ | 0.1910 | 10650 | 0.0 | - |
541
+ | 0.1919 | 10700 | 0.0 | - |
542
+ | 0.1928 | 10750 | 0.0 | - |
543
+ | 0.1937 | 10800 | 0.0 | - |
544
+ | 0.1946 | 10850 | 0.0 | - |
545
+ | 0.1955 | 10900 | 0.0 | - |
546
+ | 0.1964 | 10950 | 0.0 | - |
547
+ | 0.1973 | 11000 | 0.0001 | - |
548
+ | 0.1982 | 11050 | 0.0 | - |
549
+ | 0.1991 | 11100 | 0.0 | - |
550
+ | 0.2000 | 11150 | 0.0 | - |
551
+ | 0.2009 | 11200 | 0.0 | - |
552
+ | 0.2018 | 11250 | 0.0004 | - |
553
+ | 0.2027 | 11300 | 0.0001 | - |
554
+ | 0.2035 | 11350 | 0.0001 | - |
555
+ | 0.2044 | 11400 | 0.0 | - |
556
+ | 0.2053 | 11450 | 0.0001 | - |
557
+ | 0.2062 | 11500 | 0.0 | - |
558
+ | 0.2071 | 11550 | 0.0001 | - |
559
+ | 0.2080 | 11600 | 0.0 | - |
560
+ | 0.2089 | 11650 | 0.0 | - |
561
+ | 0.2098 | 11700 | 0.0 | - |
562
+ | 0.2107 | 11750 | 0.0 | - |
563
+ | 0.2116 | 11800 | 0.0 | - |
564
+ | 0.2125 | 11850 | 0.0 | - |
565
+ | 0.2134 | 11900 | 0.0 | - |
566
+ | 0.2143 | 11950 | 0.0001 | - |
567
+ | 0.2152 | 12000 | 0.0 | - |
568
+ | 0.2161 | 12050 | 0.0 | - |
569
+ | 0.2170 | 12100 | 0.0 | - |
570
+ | 0.2179 | 12150 | 0.0 | - |
571
+ | 0.2188 | 12200 | 0.0 | - |
572
+ | 0.2197 | 12250 | 0.0 | - |
573
+ | 0.2206 | 12300 | 0.0 | - |
574
+ | 0.2215 | 12350 | 0.0 | - |
575
+ | 0.2224 | 12400 | 0.0 | - |
576
+ | 0.2233 | 12450 | 0.0 | - |
577
+ | 0.2242 | 12500 | 0.0 | - |
578
+ | 0.2251 | 12550 | 0.0 | - |
579
+ | 0.2260 | 12600 | 0.0 | - |
580
+ | 0.2269 | 12650 | 0.0 | - |
581
+ | 0.2278 | 12700 | 0.0 | - |
582
+ | 0.2287 | 12750 | 0.0 | - |
583
+ | 0.2296 | 12800 | 0.0 | - |
584
+ | 0.2304 | 12850 | 0.0 | - |
585
+ | 0.2313 | 12900 | 0.0 | - |
586
+ | 0.2322 | 12950 | 0.0 | - |
587
+ | 0.2331 | 13000 | 0.0 | - |
588
+ | 0.2340 | 13050 | 0.0 | - |
589
+ | 0.2349 | 13100 | 0.0 | - |
590
+ | 0.2358 | 13150 | 0.0264 | - |
591
+ | 0.2367 | 13200 | 0.0 | - |
592
+ | 0.2376 | 13250 | 0.0 | - |
593
+ | 0.2385 | 13300 | 0.0 | - |
594
+ | 0.2394 | 13350 | 0.0 | - |
595
+ | 0.2403 | 13400 | 0.0 | - |
596
+ | 0.2412 | 13450 | 0.0 | - |
597
+ | 0.2421 | 13500 | 0.0 | - |
598
+ | 0.2430 | 13550 | 0.0 | - |
599
+ | 0.2439 | 13600 | 0.0 | - |
600
+ | 0.2448 | 13650 | 0.0 | - |
601
+ | 0.2457 | 13700 | 0.0 | - |
602
+ | 0.2466 | 13750 | 0.0 | - |
603
+ | 0.2475 | 13800 | 0.0 | - |
604
+ | 0.2484 | 13850 | 0.0 | - |
605
+ | 0.2493 | 13900 | 0.0 | - |
606
+ | 0.2502 | 13950 | 0.0 | - |
607
+ | 0.2511 | 14000 | 0.0 | - |
608
+ | 0.2520 | 14050 | 0.0 | - |
609
+ | 0.2529 | 14100 | 0.0 | - |
610
+ | 0.2538 | 14150 | 0.0001 | - |
611
+ | 0.2547 | 14200 | 0.0 | - |
612
+ | 0.2556 | 14250 | 0.0 | - |
613
+ | 0.2565 | 14300 | 0.0 | - |
614
+ | 0.2573 | 14350 | 0.0 | - |
615
+ | 0.2582 | 14400 | 0.0 | - |
616
+ | 0.2591 | 14450 | 0.0 | - |
617
+ | 0.2600 | 14500 | 0.0 | - |
618
+ | 0.2609 | 14550 | 0.0001 | - |
619
+ | 0.2618 | 14600 | 0.0 | - |
620
+ | 0.2627 | 14650 | 0.0 | - |
621
+ | 0.2636 | 14700 | 0.0 | - |
622
+ | 0.2645 | 14750 | 0.0 | - |
623
+ | 0.2654 | 14800 | 0.0 | - |
624
+ | 0.2663 | 14850 | 0.0 | - |
625
+ | 0.2672 | 14900 | 0.0 | - |
626
+ | 0.2681 | 14950 | 0.0001 | - |
627
+ | 0.2690 | 15000 | 0.0 | - |
628
+ | 0.2699 | 15050 | 0.0 | - |
629
+ | 0.2708 | 15100 | 0.0 | - |
630
+ | 0.2717 | 15150 | 0.0 | - |
631
+ | 0.2726 | 15200 | 0.0 | - |
632
+ | 0.2735 | 15250 | 0.0 | - |
633
+ | 0.2744 | 15300 | 0.0 | - |
634
+ | 0.2753 | 15350 | 0.0 | - |
635
+ | 0.2762 | 15400 | 0.0 | - |
636
+ | 0.2771 | 15450 | 0.0 | - |
637
+ | 0.2780 | 15500 | 0.0001 | - |
638
+ | 0.2789 | 15550 | 0.0621 | - |
639
+ | 0.2798 | 15600 | 0.0056 | - |
640
+ | 0.2807 | 15650 | 0.0 | - |
641
+ | 0.2816 | 15700 | 0.0 | - |
642
+ | 0.2825 | 15750 | 0.0145 | - |
643
+ | 0.2834 | 15800 | 0.0 | - |
644
+ | 0.2842 | 15850 | 0.0 | - |
645
+ | 0.2851 | 15900 | 0.0166 | - |
646
+ | 0.2860 | 15950 | 0.0 | - |
647
+ | 0.2869 | 16000 | 0.0 | - |
648
+ | 0.2878 | 16050 | 0.0 | - |
649
+ | 0.2887 | 16100 | 0.0166 | - |
650
+ | 0.2896 | 16150 | 0.0 | - |
651
+ | 0.2905 | 16200 | 0.0 | - |
652
+ | 0.2914 | 16250 | 0.0169 | - |
653
+ | 0.2923 | 16300 | 0.0 | - |
654
+ | 0.2932 | 16350 | 0.0 | - |
655
+ | 0.2941 | 16400 | 0.0 | - |
656
+ | 0.2950 | 16450 | 0.0 | - |
657
+ | 0.2959 | 16500 | 0.0 | - |
658
+ | 0.2968 | 16550 | 0.0 | - |
659
+ | 0.2977 | 16600 | 0.0 | - |
660
+ | 0.2986 | 16650 | 0.0 | - |
661
+ | 0.2995 | 16700 | 0.0 | - |
662
+ | 0.3004 | 16750 | 0.0 | - |
663
+ | 0.3013 | 16800 | 0.0 | - |
664
+ | 0.3022 | 16850 | 0.0 | - |
665
+ | 0.3031 | 16900 | 0.0 | - |
666
+ | 0.3040 | 16950 | 0.0 | - |
667
+ | 0.3049 | 17000 | 0.0 | - |
668
+ | 0.3058 | 17050 | 0.0138 | - |
669
+ | 0.3067 | 17100 | 0.0 | - |
670
+ | 0.3076 | 17150 | 0.0 | - |
671
+ | 0.3085 | 17200 | 0.0 | - |
672
+ | 0.3094 | 17250 | 0.0 | - |
673
+ | 0.3103 | 17300 | 0.0 | - |
674
+ | 0.3111 | 17350 | 0.0 | - |
675
+ | 0.3120 | 17400 | 0.0 | - |
676
+ | 0.3129 | 17450 | 0.0001 | - |
677
+ | 0.3138 | 17500 | 0.0 | - |
678
+ | 0.3147 | 17550 | 0.0 | - |
679
+ | 0.3156 | 17600 | 0.0 | - |
680
+ | 0.3165 | 17650 | 0.0 | - |
681
+ | 0.3174 | 17700 | 0.0 | - |
682
+ | 0.3183 | 17750 | 0.0 | - |
683
+ | 0.3192 | 17800 | 0.0 | - |
684
+ | 0.3201 | 17850 | 0.0 | - |
685
+ | 0.3210 | 17900 | 0.0 | - |
686
+ | 0.3219 | 17950 | 0.0001 | - |
687
+ | 0.3228 | 18000 | 0.0 | - |
688
+ | 0.3237 | 18050 | 0.0 | - |
689
+ | 0.3246 | 18100 | 0.0 | - |
690
+ | 0.3255 | 18150 | 0.0 | - |
691
+ | 0.3264 | 18200 | 0.0 | - |
692
+ | 0.3273 | 18250 | 0.0 | - |
693
+ | 0.3282 | 18300 | 0.0 | - |
694
+ | 0.3291 | 18350 | 0.0 | - |
695
+ | 0.3300 | 18400 | 0.0 | - |
696
+ | 0.3309 | 18450 | 0.0003 | - |
697
+ | 0.3318 | 18500 | 0.0 | - |
698
+ | 0.3327 | 18550 | 0.0 | - |
699
+ | 0.3336 | 18600 | 0.0 | - |
700
+ | 0.3345 | 18650 | 0.0 | - |
701
+ | 0.3354 | 18700 | 0.0 | - |
702
+ | 0.3363 | 18750 | 0.0 | - |
703
+ | 0.3372 | 18800 | 0.0 | - |
704
+ | 0.3380 | 18850 | 0.0 | - |
705
+ | 0.3389 | 18900 | 0.0 | - |
706
+ | 0.3398 | 18950 | 0.0 | - |
707
+ | 0.3407 | 19000 | 0.0 | - |
708
+ | 0.3416 | 19050 | 0.0 | - |
709
+ | 0.3425 | 19100 | 0.0 | - |
710
+ | 0.3434 | 19150 | 0.0 | - |
711
+ | 0.3443 | 19200 | 0.0 | - |
712
+ | 0.3452 | 19250 | 0.0 | - |
713
+ | 0.3461 | 19300 | 0.0 | - |
714
+ | 0.3470 | 19350 | 0.0 | - |
715
+ | 0.3479 | 19400 | 0.0 | - |
716
+ | 0.3488 | 19450 | 0.0 | - |
717
+ | 0.3497 | 19500 | 0.0001 | - |
718
+ | 0.3506 | 19550 | 0.0131 | - |
719
+ | 0.3515 | 19600 | 0.0 | - |
720
+ | 0.3524 | 19650 | 0.0 | - |
721
+ | 0.3533 | 19700 | 0.0 | - |
722
+ | 0.3542 | 19750 | 0.0 | - |
723
+ | 0.3551 | 19800 | 0.0 | - |
724
+ | 0.3560 | 19850 | 0.0 | - |
725
+ | 0.3569 | 19900 | 0.0 | - |
726
+ | 0.3578 | 19950 | 0.0 | - |
727
+ | 0.3587 | 20000 | 0.0 | - |
728
+ | 0.3596 | 20050 | 0.0 | - |
729
+ | 0.3605 | 20100 | 0.0 | - |
730
+ | 0.3614 | 20150 | 0.0 | - |
731
+ | 0.3623 | 20200 | 0.0208 | - |
732
+ | 0.3632 | 20250 | 0.0 | - |
733
+ | 0.3641 | 20300 | 0.0 | - |
734
+ | 0.3650 | 20350 | 0.0 | - |
735
+ | 0.3658 | 20400 | 0.0 | - |
736
+ | 0.3667 | 20450 | 0.0 | - |
737
+ | 0.3676 | 20500 | 0.0 | - |
738
+ | 0.3685 | 20550 | 0.0 | - |
739
+ | 0.3694 | 20600 | 0.0 | - |
740
+ | 0.3703 | 20650 | 0.0 | - |
741
+ | 0.3712 | 20700 | 0.0 | - |
742
+ | 0.3721 | 20750 | 0.0 | - |
743
+ | 0.3730 | 20800 | 0.0 | - |
744
+ | 0.3739 | 20850 | 0.0 | - |
745
+ | 0.3748 | 20900 | 0.0 | - |
746
+ | 0.3757 | 20950 | 0.0 | - |
747
+ | 0.3766 | 21000 | 0.0 | - |
748
+ | 0.3775 | 21050 | 0.0 | - |
749
+ | 0.3784 | 21100 | 0.0 | - |
750
+ | 0.3793 | 21150 | 0.0 | - |
751
+ | 0.3802 | 21200 | 0.0 | - |
752
+ | 0.3811 | 21250 | 0.0 | - |
753
+ | 0.3820 | 21300 | 0.0 | - |
754
+ | 0.3829 | 21350 | 0.0 | - |
755
+ | 0.3838 | 21400 | 0.0 | - |
756
+ | 0.3847 | 21450 | 0.0 | - |
757
+ | 0.3856 | 21500 | 0.0 | - |
758
+ | 0.3865 | 21550 | 0.0 | - |
759
+ | 0.3874 | 21600 | 0.0 | - |
760
+ | 0.3883 | 21650 | 0.0 | - |
761
+ | 0.3892 | 21700 | 0.0 | - |
762
+ | 0.3901 | 21750 | 0.0 | - |
763
+ | 0.3910 | 21800 | 0.0 | - |
764
+ | 0.3919 | 21850 | 0.0001 | - |
765
+ | 0.3927 | 21900 | 0.0 | - |
766
+ | 0.3936 | 21950 | 0.0 | - |
767
+ | 0.3945 | 22000 | 0.0 | - |
768
+ | 0.3954 | 22050 | 0.0 | - |
769
+ | 0.3963 | 22100 | 0.0 | - |
770
+ | 0.3972 | 22150 | 0.0 | - |
771
+ | 0.3981 | 22200 | 0.0 | - |
772
+ | 0.3990 | 22250 | 0.0 | - |
773
+ | 0.3999 | 22300 | 0.0 | - |
774
+ | 0.4008 | 22350 | 0.0 | - |
775
+ | 0.4017 | 22400 | 0.0 | - |
776
+ | 0.4026 | 22450 | 0.0 | - |
777
+ | 0.4035 | 22500 | 0.0 | - |
778
+ | 0.4044 | 22550 | 0.0 | - |
779
+ | 0.4053 | 22600 | 0.0217 | - |
780
+ | 0.4062 | 22650 | 0.0 | - |
781
+ | 0.4071 | 22700 | 0.0 | - |
782
+ | 0.4080 | 22750 | 0.0 | - |
783
+ | 0.4089 | 22800 | 0.0 | - |
784
+ | 0.4098 | 22850 | 0.0 | - |
785
+ | 0.4107 | 22900 | 0.0 | - |
786
+ | 0.4116 | 22950 | 0.0 | - |
787
+ | 0.4125 | 23000 | 0.0 | - |
788
+ | 0.4134 | 23050 | 0.0 | - |
789
+ | 0.4143 | 23100 | 0.0 | - |
790
+ | 0.4152 | 23150 | 0.0 | - |
791
+ | 0.4161 | 23200 | 0.0 | - |
792
+ | 0.4170 | 23250 | 0.0 | - |
793
+ | 0.4179 | 23300 | 0.0 | - |
794
+ | 0.4188 | 23350 | 0.0 | - |
795
+ | 0.4196 | 23400 | 0.0 | - |
796
+ | 0.4205 | 23450 | 0.0 | - |
797
+ | 0.4214 | 23500 | 0.0 | - |
798
+ | 0.4223 | 23550 | 0.0 | - |
799
+ | 0.4232 | 23600 | 0.0 | - |
800
+ | 0.4241 | 23650 | 0.0 | - |
801
+ | 0.4250 | 23700 | 0.0 | - |
802
+ | 0.4259 | 23750 | 0.0 | - |
803
+ | 0.4268 | 23800 | 0.0 | - |
804
+ | 0.4277 | 23850 | 0.0 | - |
805
+ | 0.4286 | 23900 | 0.0098 | - |
806
+ | 0.4295 | 23950 | 0.0 | - |
807
+ | 0.4304 | 24000 | 0.0 | - |
808
+ | 0.4313 | 24050 | 0.0 | - |
809
+ | 0.4322 | 24100 | 0.0 | - |
810
+ | 0.4331 | 24150 | 0.0 | - |
811
+ | 0.4340 | 24200 | 0.0 | - |
812
+ | 0.4349 | 24250 | 0.0 | - |
813
+ | 0.4358 | 24300 | 0.0089 | - |
814
+ | 0.4367 | 24350 | 0.0 | - |
815
+ | 0.4376 | 24400 | 0.0 | - |
816
+ | 0.4385 | 24450 | 0.0 | - |
817
+ | 0.4394 | 24500 | 0.0 | - |
818
+ | 0.4403 | 24550 | 0.0 | - |
819
+ | 0.4412 | 24600 | 0.0092 | - |
820
+ | 0.4421 | 24650 | 0.0003 | - |
821
+ | 0.4430 | 24700 | 0.0283 | - |
822
+ | 0.4439 | 24750 | 0.0 | - |
823
+ | 0.4448 | 24800 | 0.0 | - |
824
+ | 0.4457 | 24850 | 0.0 | - |
825
+ | 0.4465 | 24900 | 0.0 | - |
826
+ | 0.4474 | 24950 | 0.0 | - |
827
+ | 0.4483 | 25000 | 0.0 | - |
828
+ | 0.4492 | 25050 | 0.0 | - |
829
+ | 0.4501 | 25100 | 0.0 | - |
830
+ | 0.4510 | 25150 | 0.0002 | - |
831
+ | 0.4519 | 25200 | 0.0016 | - |
832
+ | 0.4528 | 25250 | 0.0 | - |
833
+ | 0.4537 | 25300 | 0.0 | - |
834
+ | 0.4546 | 25350 | 0.0 | - |
835
+ | 0.4555 | 25400 | 0.0 | - |
836
+ | 0.4564 | 25450 | 0.0 | - |
837
+ | 0.4573 | 25500 | 0.0 | - |
838
+ | 0.4582 | 25550 | 0.0 | - |
839
+ | 0.4591 | 25600 | 0.0 | - |
840
+ | 0.4600 | 25650 | 0.0171 | - |
841
+ | 0.4609 | 25700 | 0.0 | - |
842
+ | 0.4618 | 25750 | 0.0 | - |
843
+ | 0.4627 | 25800 | 0.0161 | - |
844
+ | 0.4636 | 25850 | 0.0 | - |
845
+ | 0.4645 | 25900 | 0.0 | - |
846
+ | 0.4654 | 25950 | 0.0 | - |
847
+ | 0.4663 | 26000 | 0.0 | - |
848
+ | 0.4672 | 26050 | 0.0078 | - |
849
+ | 0.4681 | 26100 | 0.0 | - |
850
+ | 0.4690 | 26150 | 0.0 | - |
851
+ | 0.4699 | 26200 | 0.0 | - |
852
+ | 0.4708 | 26250 | 0.0 | - |
853
+ | 0.4717 | 26300 | 0.0 | - |
854
+ | 0.4726 | 26350 | 0.0 | - |
855
+ | 0.4734 | 26400 | 0.0 | - |
856
+ | 0.4743 | 26450 | 0.0 | - |
857
+ | 0.4752 | 26500 | 0.0091 | - |
858
+ | 0.4761 | 26550 | 0.0 | - |
859
+ | 0.4770 | 26600 | 0.0 | - |
860
+ | 0.4779 | 26650 | 0.0 | - |
861
+ | 0.4788 | 26700 | 0.0 | - |
862
+ | 0.4797 | 26750 | 0.0 | - |
863
+ | 0.4806 | 26800 | 0.0 | - |
864
+ | 0.4815 | 26850 | 0.0 | - |
865
+ | 0.4824 | 26900 | 0.0 | - |
866
+ | 0.4833 | 26950 | 0.0 | - |
867
+ | 0.4842 | 27000 | 0.0 | - |
868
+ | 0.4851 | 27050 | 0.0 | - |
869
+ | 0.4860 | 27100 | 0.0 | - |
870
+ | 0.4869 | 27150 | 0.0 | - |
871
+ | 0.4878 | 27200 | 0.0 | - |
872
+ | 0.4887 | 27250 | 0.0 | - |
873
+ | 0.4896 | 27300 | 0.0 | - |
874
+ | 0.4905 | 27350 | 0.0 | - |
875
+ | 0.4914 | 27400 | 0.0 | - |
876
+ | 0.4923 | 27450 | 0.0 | - |
877
+ | 0.4932 | 27500 | 0.0 | - |
878
+ | 0.4941 | 27550 | 0.0 | - |
879
+ | 0.4950 | 27600 | 0.0 | - |
880
+ | 0.4959 | 27650 | 0.0 | - |
881
+ | 0.4968 | 27700 | 0.0 | - |
882
+ | 0.4977 | 27750 | 0.0 | - |
883
+ | 0.4986 | 27800 | 0.0 | - |
884
+ | 0.4995 | 27850 | 0.0 | - |
885
+ | 0.5003 | 27900 | 0.0273 | - |
886
+ | 0.5012 | 27950 | 0.0 | - |
887
+ | 0.5021 | 28000 | 0.0 | - |
888
+ | 0.5030 | 28050 | 0.0 | - |
889
+ | 0.5039 | 28100 | 0.0 | - |
890
+ | 0.5048 | 28150 | 0.0 | - |
891
+ | 0.5057 | 28200 | 0.0 | - |
892
+ | 0.5066 | 28250 | 0.0 | - |
893
+ | 0.5075 | 28300 | 0.0 | - |
894
+ | 0.5084 | 28350 | 0.0 | - |
895
+ | 0.5093 | 28400 | 0.0 | - |
896
+ | 0.5102 | 28450 | 0.0 | - |
897
+ | 0.5111 | 28500 | 0.0 | - |
898
+ | 0.5120 | 28550 | 0.0 | - |
899
+ | 0.5129 | 28600 | 0.0 | - |
900
+ | 0.5138 | 28650 | 0.0 | - |
901
+ | 0.5147 | 28700 | 0.0 | - |
902
+ | 0.5156 | 28750 | 0.0 | - |
903
+ | 0.5165 | 28800 | 0.0 | - |
904
+ | 0.5174 | 28850 | 0.0 | - |
905
+ | 0.5183 | 28900 | 0.0 | - |
906
+ | 0.5192 | 28950 | 0.017 | - |
907
+ | 0.5201 | 29000 | 0.0 | - |
908
+ | 0.5210 | 29050 | 0.0 | - |
909
+ | 0.5219 | 29100 | 0.0 | - |
910
+ | 0.5228 | 29150 | 0.0 | - |
911
+ | 0.5237 | 29200 | 0.0 | - |
912
+ | 0.5246 | 29250 | 0.0 | - |
913
+ | 0.5255 | 29300 | 0.0 | - |
914
+ | 0.5264 | 29350 | 0.0 | - |
915
+ | 0.5273 | 29400 | 0.0 | - |
916
+ | 0.5281 | 29450 | 0.0 | - |
917
+ | 0.5290 | 29500 | 0.0211 | - |
918
+ | 0.5299 | 29550 | 0.0 | - |
919
+ | 0.5308 | 29600 | 0.0 | - |
920
+ | 0.5317 | 29650 | 0.0 | - |
921
+ | 0.5326 | 29700 | 0.0 | - |
922
+ | 0.5335 | 29750 | 0.0 | - |
923
+ | 0.5344 | 29800 | 0.0 | - |
924
+ | 0.5353 | 29850 | 0.0 | - |
925
+ | 0.5362 | 29900 | 0.0 | - |
926
+ | 0.5371 | 29950 | 0.0 | - |
927
+ | 0.5380 | 30000 | 0.0 | - |
928
+ | 0.5389 | 30050 | 0.0002 | - |
929
+ | 0.5398 | 30100 | 0.0 | - |
930
+ | 0.5407 | 30150 | 0.0 | - |
931
+ | 0.5416 | 30200 | 0.0 | - |
932
+ | 0.5425 | 30250 | 0.0 | - |
933
+ | 0.5434 | 30300 | 0.0 | - |
934
+ | 0.5443 | 30350 | 0.0 | - |
935
+ | 0.5452 | 30400 | 0.0 | - |
936
+ | 0.5461 | 30450 | 0.0 | - |
937
+ | 0.5470 | 30500 | 0.0158 | - |
938
+ | 0.5479 | 30550 | 0.0 | - |
939
+ | 0.5488 | 30600 | 0.0 | - |
940
+ | 0.5497 | 30650 | 0.0 | - |
941
+ | 0.5506 | 30700 | 0.0 | - |
942
+ | 0.5515 | 30750 | 0.0165 | - |
943
+ | 0.5524 | 30800 | 0.0 | - |
944
+ | 0.5533 | 30850 | 0.0 | - |
945
+ | 0.5542 | 30900 | 0.0 | - |
946
+ | 0.5550 | 30950 | 0.0 | - |
947
+ | 0.5559 | 31000 | 0.0 | - |
948
+ | 0.5568 | 31050 | 0.0 | - |
949
+ | 0.5577 | 31100 | 0.0 | - |
950
+ | 0.5586 | 31150 | 0.0132 | - |
951
+ | 0.5595 | 31200 | 0.0 | - |
952
+ | 0.5604 | 31250 | 0.0 | - |
953
+ | 0.5613 | 31300 | 0.0 | - |
954
+ | 0.5622 | 31350 | 0.0 | - |
955
+ | 0.5631 | 31400 | 0.0 | - |
956
+ | 0.5640 | 31450 | 0.0 | - |
957
+ | 0.5649 | 31500 | 0.0 | - |
958
+ | 0.5658 | 31550 | 0.0 | - |
959
+ | 0.5667 | 31600 | 0.0 | - |
960
+ | 0.5676 | 31650 | 0.0 | - |
961
+ | 0.5685 | 31700 | 0.0 | - |
962
+ | 0.5694 | 31750 | 0.0 | - |
963
+ | 0.5703 | 31800 | 0.0 | - |
964
+ | 0.5712 | 31850 | 0.0 | - |
965
+ | 0.5721 | 31900 | 0.0 | - |
966
+ | 0.5730 | 31950 | 0.0185 | - |
967
+ | 0.5739 | 32000 | 0.0 | - |
968
+ | 0.5748 | 32050 | 0.0 | - |
969
+ | 0.5757 | 32100 | 0.0 | - |
970
+ | 0.5766 | 32150 | 0.0 | - |
971
+ | 0.5775 | 32200 | 0.0 | - |
972
+ | 0.5784 | 32250 | 0.0 | - |
973
+ | 0.5793 | 32300 | 0.0 | - |
974
+ | 0.5802 | 32350 | 0.0 | - |
975
+ | 0.5811 | 32400 | 0.0 | - |
976
+ | 0.5819 | 32450 | 0.0 | - |
977
+ | 0.5828 | 32500 | 0.0 | - |
978
+ | 0.5837 | 32550 | 0.0 | - |
979
+ | 0.5846 | 32600 | 0.0 | - |
980
+ | 0.5855 | 32650 | 0.0 | - |
981
+ | 0.5864 | 32700 | 0.0 | - |
982
+ | 0.5873 | 32750 | 0.0 | - |
983
+ | 0.5882 | 32800 | 0.0 | - |
984
+ | 0.5891 | 32850 | 0.0 | - |
985
+ | 0.5900 | 32900 | 0.0 | - |
986
+ | 0.5909 | 32950 | 0.0 | - |
987
+ | 0.5918 | 33000 | 0.0 | - |
988
+ | 0.5927 | 33050 | 0.0 | - |
989
+ | 0.5936 | 33100 | 0.0 | - |
990
+ | 0.5945 | 33150 | 0.0 | - |
991
+ | 0.5954 | 33200 | 0.0 | - |
992
+ | 0.5963 | 33250 | 0.0 | - |
993
+ | 0.5972 | 33300 | 0.0 | - |
994
+ | 0.5981 | 33350 | 0.0 | - |
995
+ | 0.5990 | 33400 | 0.0 | - |
996
+ | 0.5999 | 33450 | 0.0 | - |
997
+ | 0.6008 | 33500 | 0.0 | - |
998
+ | 0.6017 | 33550 | 0.0 | - |
999
+ | 0.6026 | 33600 | 0.0 | - |
1000
+ | 0.6035 | 33650 | 0.0 | - |
1001
+ | 0.6044 | 33700 | 0.0 | - |
1002
+ | 0.6053 | 33750 | 0.0 | - |
1003
+ | 0.6062 | 33800 | 0.0 | - |
1004
+ | 0.6071 | 33850 | 0.0 | - |
1005
+ | 0.6080 | 33900 | 0.0 | - |
1006
+ | 0.6088 | 33950 | 0.0 | - |
1007
+ | 0.6097 | 34000 | 0.0 | - |
1008
+ | 0.6106 | 34050 | 0.0 | - |
1009
+ | 0.6115 | 34100 | 0.0 | - |
1010
+ | 0.6124 | 34150 | 0.0 | - |
1011
+ | 0.6133 | 34200 | 0.0 | - |
1012
+ | 0.6142 | 34250 | 0.0 | - |
1013
+ | 0.6151 | 34300 | 0.0 | - |
1014
+ | 0.6160 | 34350 | 0.0 | - |
1015
+ | 0.6169 | 34400 | 0.0 | - |
1016
+ | 0.6178 | 34450 | 0.0 | - |
1017
+ | 0.6187 | 34500 | 0.0 | - |
1018
+ | 0.6196 | 34550 | 0.0 | - |
1019
+ | 0.6205 | 34600 | 0.0 | - |
1020
+ | 0.6214 | 34650 | 0.0 | - |
1021
+ | 0.6223 | 34700 | 0.0 | - |
1022
+ | 0.6232 | 34750 | 0.0 | - |
1023
+ | 0.6241 | 34800 | 0.0 | - |
1024
+ | 0.6250 | 34850 | 0.0 | - |
1025
+ | 0.6259 | 34900 | 0.0174 | - |
1026
+ | 0.6268 | 34950 | 0.0 | - |
1027
+ | 0.6277 | 35000 | 0.0 | - |
1028
+ | 0.6286 | 35050 | 0.0 | - |
1029
+ | 0.6295 | 35100 | 0.0173 | - |
1030
+ | 0.6304 | 35150 | 0.0 | - |
1031
+ | 0.6313 | 35200 | 0.0 | - |
1032
+ | 0.6322 | 35250 | 0.0 | - |
1033
+ | 0.6331 | 35300 | 0.0 | - |
1034
+ | 0.6340 | 35350 | 0.0 | - |
1035
+ | 0.6349 | 35400 | 0.0 | - |
1036
+ | 0.6357 | 35450 | 0.0 | - |
1037
+ | 0.6366 | 35500 | 0.0 | - |
1038
+ | 0.6375 | 35550 | 0.0 | - |
1039
+ | 0.6384 | 35600 | 0.0 | - |
1040
+ | 0.6393 | 35650 | 0.0 | - |
1041
+ | 0.6402 | 35700 | 0.0 | - |
1042
+ | 0.6411 | 35750 | 0.0 | - |
1043
+ | 0.6420 | 35800 | 0.0 | - |
1044
+ | 0.6429 | 35850 | 0.0 | - |
1045
+ | 0.6438 | 35900 | 0.0 | - |
1046
+ | 0.6447 | 35950 | 0.0 | - |
1047
+ | 0.6456 | 36000 | 0.0 | - |
1048
+ | 0.6465 | 36050 | 0.0 | - |
1049
+ | 0.6474 | 36100 | 0.0 | - |
1050
+ | 0.6483 | 36150 | 0.0 | - |
1051
+ | 0.6492 | 36200 | 0.0 | - |
1052
+ | 0.6501 | 36250 | 0.0 | - |
1053
+ | 0.6510 | 36300 | 0.0115 | - |
1054
+ | 0.6519 | 36350 | 0.0 | - |
1055
+ | 0.6528 | 36400 | 0.0 | - |
1056
+ | 0.6537 | 36450 | 0.0 | - |
1057
+ | 0.6546 | 36500 | 0.0 | - |
1058
+ | 0.6555 | 36550 | 0.0 | - |
1059
+ | 0.6564 | 36600 | 0.0204 | - |
1060
+ | 0.6573 | 36650 | 0.0 | - |
1061
+ | 0.6582 | 36700 | 0.0125 | - |
1062
+ | 0.6591 | 36750 | 0.0 | - |
1063
+ | 0.6600 | 36800 | 0.0 | - |
1064
+ | 0.6609 | 36850 | 0.0 | - |
1065
+ | 0.6618 | 36900 | 0.0 | - |
1066
+ | 0.6626 | 36950 | 0.0 | - |
1067
+ | 0.6635 | 37000 | 0.0 | - |
1068
+ | 0.6644 | 37050 | 0.0 | - |
1069
+ | 0.6653 | 37100 | 0.0109 | - |
1070
+ | 0.6662 | 37150 | 0.0 | - |
1071
+ | 0.6671 | 37200 | 0.0 | - |
1072
+ | 0.6680 | 37250 | 0.0 | - |
1073
+ | 0.6689 | 37300 | 0.0 | - |
1074
+ | 0.6698 | 37350 | 0.0 | - |
1075
+ | 0.6707 | 37400 | 0.0 | - |
1076
+ | 0.6716 | 37450 | 0.0 | - |
1077
+ | 0.6725 | 37500 | 0.0 | - |
1078
+ | 0.6734 | 37550 | 0.0 | - |
1079
+ | 0.6743 | 37600 | 0.0 | - |
1080
+ | 0.6752 | 37650 | 0.0 | - |
1081
+ | 0.6761 | 37700 | 0.0 | - |
1082
+ | 0.6770 | 37750 | 0.0 | - |
1083
+ | 0.6779 | 37800 | 0.0 | - |
1084
+ | 0.6788 | 37850 | 0.0 | - |
1085
+ | 0.6797 | 37900 | 0.0 | - |
1086
+ | 0.6806 | 37950 | 0.0 | - |
1087
+ | 0.6815 | 38000 | 0.0 | - |
1088
+ | 0.6824 | 38050 | 0.0 | - |
1089
+ | 0.6833 | 38100 | 0.0 | - |
1090
+ | 0.6842 | 38150 | 0.0 | - |
1091
+ | 0.6851 | 38200 | 0.0 | - |
1092
+ | 0.6860 | 38250 | 0.0 | - |
1093
+ | 0.6869 | 38300 | 0.0 | - |
1094
+ | 0.6878 | 38350 | 0.0 | - |
1095
+ | 0.6887 | 38400 | 0.0 | - |
1096
+ | 0.6896 | 38450 | 0.0 | - |
1097
+ | 0.6904 | 38500 | 0.0 | - |
1098
+ | 0.6913 | 38550 | 0.0 | - |
1099
+ | 0.6922 | 38600 | 0.0 | - |
1100
+ | 0.6931 | 38650 | 0.0 | - |
1101
+ | 0.6940 | 38700 | 0.0 | - |
1102
+ | 0.6949 | 38750 | 0.0 | - |
1103
+ | 0.6958 | 38800 | 0.0 | - |
1104
+ | 0.6967 | 38850 | 0.0 | - |
1105
+ | 0.6976 | 38900 | 0.0 | - |
1106
+ | 0.6985 | 38950 | 0.0 | - |
1107
+ | 0.6994 | 39000 | 0.0 | - |
1108
+ | 0.7003 | 39050 | 0.0 | - |
1109
+ | 0.7012 | 39100 | 0.0 | - |
1110
+ | 0.7021 | 39150 | 0.0 | - |
1111
+ | 0.7030 | 39200 | 0.0 | - |
1112
+ | 0.7039 | 39250 | 0.0 | - |
1113
+ | 0.7048 | 39300 | 0.0 | - |
1114
+ | 0.7057 | 39350 | 0.0 | - |
1115
+ | 0.7066 | 39400 | 0.0 | - |
1116
+ | 0.7075 | 39450 | 0.0 | - |
1117
+ | 0.7084 | 39500 | 0.0 | - |
1118
+ | 0.7093 | 39550 | 0.0 | - |
1119
+ | 0.7102 | 39600 | 0.0 | - |
1120
+ | 0.7111 | 39650 | 0.0 | - |
1121
+ | 0.7120 | 39700 | 0.0 | - |
1122
+ | 0.7129 | 39750 | 0.0 | - |
1123
+ | 0.7138 | 39800 | 0.0 | - |
1124
+ | 0.7147 | 39850 | 0.0 | - |
1125
+ | 0.7156 | 39900 | 0.0 | - |
1126
+ | 0.7165 | 39950 | 0.0 | - |
1127
+ | 0.7173 | 40000 | 0.0 | - |
1128
+ | 0.7182 | 40050 | 0.0 | - |
1129
+ | 0.7191 | 40100 | 0.0 | - |
1130
+ | 0.7200 | 40150 | 0.0 | - |
1131
+ | 0.7209 | 40200 | 0.0 | - |
1132
+ | 0.7218 | 40250 | 0.0 | - |
1133
+ | 0.7227 | 40300 | 0.0 | - |
1134
+ | 0.7236 | 40350 | 0.0 | - |
1135
+ | 0.7245 | 40400 | 0.0 | - |
1136
+ | 0.7254 | 40450 | 0.0 | - |
1137
+ | 0.7263 | 40500 | 0.0 | - |
1138
+ | 0.7272 | 40550 | 0.0 | - |
1139
+ | 0.7281 | 40600 | 0.0 | - |
1140
+ | 0.7290 | 40650 | 0.0 | - |
1141
+ | 0.7299 | 40700 | 0.0 | - |
1142
+ | 0.7308 | 40750 | 0.0 | - |
1143
+ | 0.7317 | 40800 | 0.0 | - |
1144
+ | 0.7326 | 40850 | 0.0 | - |
1145
+ | 0.7335 | 40900 | 0.0 | - |
1146
+ | 0.7344 | 40950 | 0.0 | - |
1147
+ | 0.7353 | 41000 | 0.0 | - |
1148
+ | 0.7362 | 41050 | 0.0 | - |
1149
+ | 0.7371 | 41100 | 0.0 | - |
1150
+ | 0.7380 | 41150 | 0.0153 | - |
1151
+ | 0.7389 | 41200 | 0.0 | - |
1152
+ | 0.7398 | 41250 | 0.0 | - |
1153
+ | 0.7407 | 41300 | 0.0 | - |
1154
+ | 0.7416 | 41350 | 0.0 | - |
1155
+ | 0.7425 | 41400 | 0.0 | - |
1156
+ | 0.7434 | 41450 | 0.0 | - |
1157
+ | 0.7442 | 41500 | 0.0 | - |
1158
+ | 0.7451 | 41550 | 0.0 | - |
1159
+ | 0.7460 | 41600 | 0.0 | - |
1160
+ | 0.7469 | 41650 | 0.0 | - |
1161
+ | 0.7478 | 41700 | 0.0 | - |
1162
+ | 0.7487 | 41750 | 0.0001 | - |
1163
+ | 0.7496 | 41800 | 0.0 | - |
1164
+ | 0.7505 | 41850 | 0.0 | - |
1165
+ | 0.7514 | 41900 | 0.0 | - |
1166
+ | 0.7523 | 41950 | 0.0 | - |
1167
+ | 0.7532 | 42000 | 0.0 | - |
1168
+ | 0.7541 | 42050 | 0.0 | - |
1169
+ | 0.7550 | 42100 | 0.0155 | - |
1170
+ | 0.7559 | 42150 | 0.0231 | - |
1171
+ | 0.7568 | 42200 | 0.0 | - |
1172
+ | 0.7577 | 42250 | 0.0 | - |
1173
+ | 0.7586 | 42300 | 0.0 | - |
1174
+ | 0.7595 | 42350 | 0.0172 | - |
1175
+ | 0.7604 | 42400 | 0.0169 | - |
1176
+ | 0.7613 | 42450 | 0.0 | - |
1177
+ | 0.7622 | 42500 | 0.0 | - |
1178
+ | 0.7631 | 42550 | 0.0157 | - |
1179
+ | 0.7640 | 42600 | 0.0 | - |
1180
+ | 0.7649 | 42650 | 0.0 | - |
1181
+ | 0.7658 | 42700 | 0.0 | - |
1182
+ | 0.7667 | 42750 | 0.0 | - |
1183
+ | 0.7676 | 42800 | 0.0 | - |
1184
+ | 0.7685 | 42850 | 0.0 | - |
1185
+ | 0.7694 | 42900 | 0.0 | - |
1186
+ | 0.7703 | 42950 | 0.0208 | - |
1187
+ | 0.7711 | 43000 | 0.0 | - |
1188
+ | 0.7720 | 43050 | 0.0 | - |
1189
+ | 0.7729 | 43100 | 0.0 | - |
1190
+ | 0.7738 | 43150 | 0.0 | - |
1191
+ | 0.7747 | 43200 | 0.0 | - |
1192
+ | 0.7756 | 43250 | 0.0 | - |
1193
+ | 0.7765 | 43300 | 0.0 | - |
1194
+ | 0.7774 | 43350 | 0.0 | - |
1195
+ | 0.7783 | 43400 | 0.0 | - |
1196
+ | 0.7792 | 43450 | 0.0 | - |
1197
+ | 0.7801 | 43500 | 0.0 | - |
1198
+ | 0.7810 | 43550 | 0.0 | - |
1199
+ | 0.7819 | 43600 | 0.0 | - |
1200
+ | 0.7828 | 43650 | 0.0 | - |
1201
+ | 0.7837 | 43700 | 0.0 | - |
1202
+ | 0.7846 | 43750 | 0.0 | - |
1203
+ | 0.7855 | 43800 | 0.0 | - |
1204
+ | 0.7864 | 43850 | 0.0 | - |
1205
+ | 0.7873 | 43900 | 0.0 | - |
1206
+ | 0.7882 | 43950 | 0.0 | - |
1207
+ | 0.7891 | 44000 | 0.0 | - |
1208
+ | 0.7900 | 44050 | 0.0 | - |
1209
+ | 0.7909 | 44100 | 0.0 | - |
1210
+ | 0.7918 | 44150 | 0.0 | - |
1211
+ | 0.7927 | 44200 | 0.0 | - |
1212
+ | 0.7936 | 44250 | 0.0 | - |
1213
+ | 0.7945 | 44300 | 0.0 | - |
1214
+ | 0.7954 | 44350 | 0.0 | - |
1215
+ | 0.7963 | 44400 | 0.0 | - |
1216
+ | 0.7972 | 44450 | 0.0 | - |
1217
+ | 0.7980 | 44500 | 0.0 | - |
1218
+ | 0.7989 | 44550 | 0.0 | - |
1219
+ | 0.7998 | 44600 | 0.0 | - |
1220
+ | 0.8007 | 44650 | 0.0 | - |
1221
+ | 0.8016 | 44700 | 0.0 | - |
1222
+ | 0.8025 | 44750 | 0.0 | - |
1223
+ | 0.8034 | 44800 | 0.0 | - |
1224
+ | 0.8043 | 44850 | 0.0 | - |
1225
+ | 0.8052 | 44900 | 0.0 | - |
1226
+ | 0.8061 | 44950 | 0.0108 | - |
1227
+ | 0.8070 | 45000 | 0.0 | - |
1228
+ | 0.8079 | 45050 | 0.0 | - |
1229
+ | 0.8088 | 45100 | 0.0 | - |
1230
+ | 0.8097 | 45150 | 0.0 | - |
1231
+ | 0.8106 | 45200 | 0.0 | - |
1232
+ | 0.8115 | 45250 | 0.0 | - |
1233
+ | 0.8124 | 45300 | 0.0 | - |
1234
+ | 0.8133 | 45350 | 0.0 | - |
1235
+ | 0.8142 | 45400 | 0.0 | - |
1236
+ | 0.8151 | 45450 | 0.0 | - |
1237
+ | 0.8160 | 45500 | 0.0 | - |
1238
+ | 0.8169 | 45550 | 0.0 | - |
1239
+ | 0.8178 | 45600 | 0.0 | - |
1240
+ | 0.8187 | 45650 | 0.0 | - |
1241
+ | 0.8196 | 45700 | 0.0 | - |
1242
+ | 0.8205 | 45750 | 0.0 | - |
1243
+ | 0.8214 | 45800 | 0.0 | - |
1244
+ | 0.8223 | 45850 | 0.0 | - |
1245
+ | 0.8232 | 45900 | 0.0 | - |
1246
+ | 0.8241 | 45950 | 0.0 | - |
1247
+ | 0.8249 | 46000 | 0.0 | - |
1248
+ | 0.8258 | 46050 | 0.0 | - |
1249
+ | 0.8267 | 46100 | 0.0211 | - |
1250
+ | 0.8276 | 46150 | 0.0 | - |
1251
+ | 0.8285 | 46200 | 0.0 | - |
1252
+ | 0.8294 | 46250 | 0.0 | - |
1253
+ | 0.8303 | 46300 | 0.0 | - |
1254
+ | 0.8312 | 46350 | 0.0 | - |
1255
+ | 0.8321 | 46400 | 0.0 | - |
1256
+ | 0.8330 | 46450 | 0.0 | - |
1257
+ | 0.8339 | 46500 | 0.0 | - |
1258
+ | 0.8348 | 46550 | 0.0 | - |
1259
+ | 0.8357 | 46600 | 0.0 | - |
1260
+ | 0.8366 | 46650 | 0.0114 | - |
1261
+ | 0.8375 | 46700 | 0.0 | - |
1262
+ | 0.8384 | 46750 | 0.0 | - |
1263
+ | 0.8393 | 46800 | 0.0 | - |
1264
+ | 0.8402 | 46850 | 0.0 | - |
1265
+ | 0.8411 | 46900 | 0.0 | - |
1266
+ | 0.8420 | 46950 | 0.0 | - |
1267
+ | 0.8429 | 47000 | 0.0 | - |
1268
+ | 0.8438 | 47050 | 0.0 | - |
1269
+ | 0.8447 | 47100 | 0.0 | - |
1270
+ | 0.8456 | 47150 | 0.0 | - |
1271
+ | 0.8465 | 47200 | 0.0 | - |
1272
+ | 0.8474 | 47250 | 0.0 | - |
1273
+ | 0.8483 | 47300 | 0.0 | - |
1274
+ | 0.8492 | 47350 | 0.0 | - |
1275
+ | 0.8501 | 47400 | 0.0 | - |
1276
+ | 0.8510 | 47450 | 0.0 | - |
1277
+ | 0.8518 | 47500 | 0.0 | - |
1278
+ | 0.8527 | 47550 | 0.0 | - |
1279
+ | 0.8536 | 47600 | 0.0 | - |
1280
+ | 0.8545 | 47650 | 0.0 | - |
1281
+ | 0.8554 | 47700 | 0.0 | - |
1282
+ | 0.8563 | 47750 | 0.0 | - |
1283
+ | 0.8572 | 47800 | 0.0 | - |
1284
+ | 0.8581 | 47850 | 0.0 | - |
1285
+ | 0.8590 | 47900 | 0.0 | - |
1286
+ | 0.8599 | 47950 | 0.0 | - |
1287
+ | 0.8608 | 48000 | 0.0178 | - |
1288
+ | 0.8617 | 48050 | 0.0 | - |
1289
+ | 0.8626 | 48100 | 0.0 | - |
1290
+ | 0.8635 | 48150 | 0.0 | - |
1291
+ | 0.8644 | 48200 | 0.0 | - |
1292
+ | 0.8653 | 48250 | 0.0 | - |
1293
+ | 0.8662 | 48300 | 0.0 | - |
1294
+ | 0.8671 | 48350 | 0.0 | - |
1295
+ | 0.8680 | 48400 | 0.0146 | - |
1296
+ | 0.8689 | 48450 | 0.0 | - |
1297
+ | 0.8698 | 48500 | 0.0 | - |
1298
+ | 0.8707 | 48550 | 0.0 | - |
1299
+ | 0.8716 | 48600 | 0.0 | - |
1300
+ | 0.8725 | 48650 | 0.0 | - |
1301
+ | 0.8734 | 48700 | 0.0 | - |
1302
+ | 0.8743 | 48750 | 0.0 | - |
1303
+ | 0.8752 | 48800 | 0.0 | - |
1304
+ | 0.8761 | 48850 | 0.0146 | - |
1305
+ | 0.8770 | 48900 | 0.0 | - |
1306
+ | 0.8779 | 48950 | 0.0 | - |
1307
+ | 0.8788 | 49000 | 0.0 | - |
1308
+ | 0.8796 | 49050 | 0.0145 | - |
1309
+ | 0.8805 | 49100 | 0.0 | - |
1310
+ | 0.8814 | 49150 | 0.0 | - |
1311
+ | 0.8823 | 49200 | 0.0 | - |
1312
+ | 0.8832 | 49250 | 0.0 | - |
1313
+ | 0.8841 | 49300 | 0.0 | - |
1314
+ | 0.8850 | 49350 | 0.0 | - |
1315
+ | 0.8859 | 49400 | 0.0 | - |
1316
+ | 0.8868 | 49450 | 0.0 | - |
1317
+ | 0.8877 | 49500 | 0.0 | - |
1318
+ | 0.8886 | 49550 | 0.0 | - |
1319
+ | 0.8895 | 49600 | 0.0 | - |
1320
+ | 0.8904 | 49650 | 0.0 | - |
1321
+ | 0.8913 | 49700 | 0.0 | - |
1322
+ | 0.8922 | 49750 | 0.0 | - |
1323
+ | 0.8931 | 49800 | 0.0 | - |
1324
+ | 0.8940 | 49850 | 0.0 | - |
1325
+ | 0.8949 | 49900 | 0.0 | - |
1326
+ | 0.8958 | 49950 | 0.0 | - |
1327
+ | 0.8967 | 50000 | 0.0 | - |
1328
+ | 0.8976 | 50050 | 0.0 | - |
1329
+ | 0.8985 | 50100 | 0.0 | - |
1330
+ | 0.8994 | 50150 | 0.0 | - |
1331
+ | 0.9003 | 50200 | 0.0 | - |
1332
+ | 0.9012 | 50250 | 0.0 | - |
1333
+ | 0.9021 | 50300 | 0.0 | - |
1334
+ | 0.9030 | 50350 | 0.0 | - |
1335
+ | 0.9039 | 50400 | 0.0 | - |
1336
+ | 0.9048 | 50450 | 0.0 | - |
1337
+ | 0.9057 | 50500 | 0.0 | - |
1338
+ | 0.9065 | 50550 | 0.0 | - |
1339
+ | 0.9074 | 50600 | 0.0 | - |
1340
+ | 0.9083 | 50650 | 0.0 | - |
1341
+ | 0.9092 | 50700 | 0.0 | - |
1342
+ | 0.9101 | 50750 | 0.0 | - |
1343
+ | 0.9110 | 50800 | 0.0 | - |
1344
+ | 0.9119 | 50850 | 0.0 | - |
1345
+ | 0.9128 | 50900 | 0.0 | - |
1346
+ | 0.9137 | 50950 | 0.0 | - |
1347
+ | 0.9146 | 51000 | 0.0 | - |
1348
+ | 0.9155 | 51050 | 0.0163 | - |
1349
+ | 0.9164 | 51100 | 0.0 | - |
1350
+ | 0.9173 | 51150 | 0.0 | - |
1351
+ | 0.9182 | 51200 | 0.0 | - |
1352
+ | 0.9191 | 51250 | 0.0 | - |
1353
+ | 0.9200 | 51300 | 0.0 | - |
1354
+ | 0.9209 | 51350 | 0.0 | - |
1355
+ | 0.9218 | 51400 | 0.0 | - |
1356
+ | 0.9227 | 51450 | 0.0 | - |
1357
+ | 0.9236 | 51500 | 0.0 | - |
1358
+ | 0.9245 | 51550 | 0.0 | - |
1359
+ | 0.9254 | 51600 | 0.0 | - |
1360
+ | 0.9263 | 51650 | 0.0 | - |
1361
+ | 0.9272 | 51700 | 0.0 | - |
1362
+ | 0.9281 | 51750 | 0.0 | - |
1363
+ | 0.9290 | 51800 | 0.0 | - |
1364
+ | 0.9299 | 51850 | 0.0 | - |
1365
+ | 0.9308 | 51900 | 0.0 | - |
1366
+ | 0.9317 | 51950 | 0.0 | - |
1367
+ | 0.9326 | 52000 | 0.0 | - |
1368
+ | 0.9334 | 52050 | 0.0163 | - |
1369
+ | 0.9343 | 52100 | 0.0 | - |
1370
+ | 0.9352 | 52150 | 0.0 | - |
1371
+ | 0.9361 | 52200 | 0.0 | - |
1372
+ | 0.9370 | 52250 | 0.0 | - |
1373
+ | 0.9379 | 52300 | 0.0 | - |
1374
+ | 0.9388 | 52350 | 0.0 | - |
1375
+ | 0.9397 | 52400 | 0.0 | - |
1376
+ | 0.9406 | 52450 | 0.0 | - |
1377
+ | 0.9415 | 52500 | 0.0162 | - |
1378
+ | 0.9424 | 52550 | 0.0 | - |
1379
+ | 0.9433 | 52600 | 0.0 | - |
1380
+ | 0.9442 | 52650 | 0.0 | - |
1381
+ | 0.9451 | 52700 | 0.0 | - |
1382
+ | 0.9460 | 52750 | 0.0 | - |
1383
+ | 0.9469 | 52800 | 0.0 | - |
1384
+ | 0.9478 | 52850 | 0.0149 | - |
1385
+ | 0.9487 | 52900 | 0.0 | - |
1386
+ | 0.9496 | 52950 | 0.0 | - |
1387
+ | 0.9505 | 53000 | 0.0 | - |
1388
+ | 0.9514 | 53050 | 0.0 | - |
1389
+ | 0.9523 | 53100 | 0.0 | - |
1390
+ | 0.9532 | 53150 | 0.0 | - |
1391
+ | 0.9541 | 53200 | 0.0 | - |
1392
+ | 0.9550 | 53250 | 0.0 | - |
1393
+ | 0.9559 | 53300 | 0.0 | - |
1394
+ | 0.9568 | 53350 | 0.0 | - |
1395
+ | 0.9577 | 53400 | 0.0 | - |
1396
+ | 0.9586 | 53450 | 0.0 | - |
1397
+ | 0.9595 | 53500 | 0.0 | - |
1398
+ | 0.9603 | 53550 | 0.0 | - |
1399
+ | 0.9612 | 53600 | 0.0 | - |
1400
+ | 0.9621 | 53650 | 0.0 | - |
1401
+ | 0.9630 | 53700 | 0.0 | - |
1402
+ | 0.9639 | 53750 | 0.0 | - |
1403
+ | 0.9648 | 53800 | 0.0 | - |
1404
+ | 0.9657 | 53850 | 0.0 | - |
1405
+ | 0.9666 | 53900 | 0.0 | - |
1406
+ | 0.9675 | 53950 | 0.0 | - |
1407
+ | 0.9684 | 54000 | 0.0 | - |
1408
+ | 0.9693 | 54050 | 0.0 | - |
1409
+ | 0.9702 | 54100 | 0.0 | - |
1410
+ | 0.9711 | 54150 | 0.0 | - |
1411
+ | 0.9720 | 54200 | 0.0 | - |
1412
+ | 0.9729 | 54250 | 0.0 | - |
1413
+ | 0.9738 | 54300 | 0.0 | - |
1414
+ | 0.9747 | 54350 | 0.0 | - |
1415
+ | 0.9756 | 54400 | 0.0 | - |
1416
+ | 0.9765 | 54450 | 0.0 | - |
1417
+ | 0.9774 | 54500 | 0.0 | - |
1418
+ | 0.9783 | 54550 | 0.0 | - |
1419
+ | 0.9792 | 54600 | 0.0 | - |
1420
+ | 0.9801 | 54650 | 0.0 | - |
1421
+ | 0.9810 | 54700 | 0.0 | - |
1422
+ | 0.9819 | 54750 | 0.0 | - |
1423
+ | 0.9828 | 54800 | 0.0 | - |
1424
+ | 0.9837 | 54850 | 0.0 | - |
1425
+ | 0.9846 | 54900 | 0.0 | - |
1426
+ | 0.9855 | 54950 | 0.0 | - |
1427
+ | 0.9864 | 55000 | 0.0 | - |
1428
+ | 0.9872 | 55050 | 0.0 | - |
1429
+ | 0.9881 | 55100 | 0.0156 | - |
1430
+ | 0.9890 | 55150 | 0.0 | - |
1431
+ | 0.9899 | 55200 | 0.0 | - |
1432
+ | 0.9908 | 55250 | 0.0 | - |
1433
+ | 0.9917 | 55300 | 0.0 | - |
1434
+ | 0.9926 | 55350 | 0.0 | - |
1435
+ | 0.9935 | 55400 | 0.0 | - |
1436
+ | 0.9944 | 55450 | 0.0 | - |
1437
+ | 0.9953 | 55500 | 0.0 | - |
1438
+ | 0.9962 | 55550 | 0.0 | - |
1439
+ | 0.9971 | 55600 | 0.0 | - |
1440
+ | 0.9980 | 55650 | 0.0 | - |
1441
+ | 0.9989 | 55700 | 0.0 | - |
1442
+ | 0.9998 | 55750 | 0.0 | - |
1443
+
1444
+ ### Framework Versions
1445
+ - Python: 3.10.12
1446
+ - SetFit: 1.0.3
1447
+ - Sentence Transformers: 2.7.0
1448
+ - spaCy: 3.7.4
1449
+ - Transformers: 4.40.1
1450
+ - PyTorch: 2.2.1+cu121
1451
+ - Datasets: 2.19.0
1452
+ - Tokenizers: 0.19.1
1453
+
1454
+ ## Citation
1455
+
1456
+ ### BibTeX
1457
+ ```bibtex
1458
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
1459
+ doi = {10.48550/ARXIV.2209.11055},
1460
+ url = {https://arxiv.org/abs/2209.11055},
1461
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
1462
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
1463
+ title = {Efficient Few-Shot Learning Without Prompts},
1464
+ publisher = {arXiv},
1465
+ year = {2022},
1466
+ copyright = {Creative Commons Attribution 4.0 International}
1467
+ }
1468
+ ```
1469
+
1470
+ <!--
1471
+ ## Glossary
1472
+
1473
+ *Clearly define terms in order to be accessible across audiences.*
1474
+ -->
1475
+
1476
+ <!--
1477
+ ## Model Card Authors
1478
+
1479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1480
+ -->
1481
+
1482
+ <!--
1483
+ ## Model Card Contact
1484
+
1485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1486
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "en_core_web_sm",
3
+ "span_context": 0,
4
+ "labels": [
5
+ "no aspect",
6
+ "aspect"
7
+ ],
8
+ "normalize_embeddings": false
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d309f2200765eaec70fe1c0e15ec6f15e523b2ed735e098705e5c6bd1bf882ef
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88325c7ce1d19f335fb69de1e8e50b2a6cdab97f72d67d28d4661265d24881df
3
+ size 3919
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff