push ppo-LunarLander-v2-base
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-maraoz.zip +3 -0
- ppo-LunarLander-v2-maraoz/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-maraoz/data +95 -0
- ppo-LunarLander-v2-maraoz/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-maraoz/policy.pth +3 -0
- ppo-LunarLander-v2-maraoz/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-maraoz/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.36 +/- 20.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe05e8960d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe05e896160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe05e8961f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe05e896280>", "_build": "<function ActorCriticPolicy._build at 0x7fe05e896310>", "forward": "<function ActorCriticPolicy.forward at 0x7fe05e8963a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe05e896430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe05e8964c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe05e896550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe05e8965e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe05e896670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe05e896700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe05e910720>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675357283378092917, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM9tjxrMaY/dIRCPbrczr7yDvU8g+BUPAAAAAAAAAAAoAZNvuhMwbzZ0Di8AiS4ut/EMD53/I47AACAPwAAgD/dNlC+u9vMvH1NAjoNklU4gVU2PhWtJ7kAAIA/AACAP8aIEr6Otqe8RnLwvNDO0jyaDBE+SACjvQAAgD8AAIA/2iiePeWcsT9L8fg+nkJ+vjGojz0L7a4+AAAAAAAAAADme8A9+POyPpq4oL2HapG+AtHaO8IMQT0AAAAAAAAAAHO93r0pVCy63jYGs1uD6zCBFnG7A32aMwAAgD8AAIA/kzYiPjFOiD82bKo9a22kvt9mZT08TAK9AAAAAAAAAAAAGEi7n3z9u+jVbbyijpw8oAFSPeDigr0AAIA/AACAP3OYjT43gWG9I2jOO6CGibowzsO+i0RAuwAAgD8AAIA/QCfHPfYcULqOj0K3TXRaMbn2mLtm22A2AAAAAAAAgD+a6mu98e2pPq2u8T3pD2G+iIxtPWpLz7wAAAAAAAAAALPyCL2JPzE9ComaPFQvp73fhy088+jsOwAAAAAAAAAAJnKjvRLyLT9c4KI8jO+avgl+2LtqBso9AAAAAAAAAADzRYk+e4weP3bn+r3pxlO+PlRJPY7agr0AAAAAAAAAAMAlsb20CTw+TmCQPck6TL76zFA9MfiHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuRtEa8UNbkCUhpRSlIwBbJRNQgGMAXSUR0Cf8V/oaDPGdX2UKGgGaAloD0MIxjNo6B9BbUCUhpRSlGgVTTABaBZHQJ/xbH7xd6d1fZQoaAZoCWgPQwijAifbwPRrQJSGlFKUaBVNMAFoFkdAn/JefAbhnHV9lChoBmgJaA9DCGa+g5+43GxAlIaUUpRoFU1mAWgWR0Cf8pCTlkpadX2UKGgGaAloD0MIbToCuNk2b0CUhpRSlGgVTdwBaBZHQJ/y1hVlwtJ1fZQoaAZoCWgPQwizz2OU52ZxQJSGlFKUaBVNaQFoFkdAn/TZCOWBz3V9lChoBmgJaA9DCMMOY9JfjW1AlIaUUpRoFU1eAWgWR0Cf9UHvttygdX2UKGgGaAloD0MINlg4SfPocUCUhpRSlGgVTQMBaBZHQJ/1nfJmukl1fZQoaAZoCWgPQwj5Eio4vHJtQJSGlFKUaBVNKQFoFkdAn/kbLpzLfXV9lChoBmgJaA9DCFiR0QEJQHFAlIaUUpRoFU07AWgWR0Cf+TGPxQSBdX2UKGgGaAloD0MIz2VqErwHckCUhpRSlGgVTUcBaBZHQJ/50oCuEEl1fZQoaAZoCWgPQwh6U5EKY0FDQJSGlFKUaBVL7mgWR0Cf+nthuwX7dX2UKGgGaAloD0MIDTM0nshhcUCUhpRSlGgVTZICaBZHQJ/7e8scyWR1fZQoaAZoCWgPQwjOxd/2hAFwQJSGlFKUaBVNFgFoFkdAoAff40uUU3V9lChoBmgJaA9DCLiTiPAvoW5AlIaUUpRoFU1mAWgWR0CgCAduYQardX2UKGgGaAloD0MIrKksCjsIbkCUhpRSlGgVTTsBaBZHQKAIJvqkdmx1fZQoaAZoCWgPQwgj9DP1updvQJSGlFKUaBVNNAFoFkdAoAitKbrkbXV9lChoBmgJaA9DCObPtwULYHBAlIaUUpRoFU2rAWgWR0CgCLqkVN5/dX2UKGgGaAloD0MIKZZbWg3rbkCUhpRSlGgVTVEBaBZHQKAJCnzg/C91fZQoaAZoCWgPQwicbAN3oI5sQJSGlFKUaBVNKQFoFkdAoAmt07r9l3V9lChoBmgJaA9DCDfiyW7mEm9AlIaUUpRoFU0pAWgWR0CgCd4FJQLvdX2UKGgGaAloD0MIRidLrTcQckCUhpRSlGgVTUQBaBZHQKAJ95s0pEx1fZQoaAZoCWgPQwjH1F3ZhX9uQJSGlFKUaBVNNwFoFkdAoAwqHXVbzXV9lChoBmgJaA9DCNmTwOachHFAlIaUUpRoFU0gAWgWR0CgDFn3cpLFdX2UKGgGaAloD0MIJuSDnk2+b0CUhpRSlGgVTVoBaBZHQKANUj1wo9d1fZQoaAZoCWgPQwhjfm5oSuVrQJSGlFKUaBVNdQFoFkdAoA2ThWHUMHV9lChoBmgJaA9DCL2KjA7I3mRAlIaUUpRoFU3oA2gWR0CgDo8TrVvudX2UKGgGaAloD0MIw0fElMisbECUhpRSlGgVTU8BaBZHQKAO8WAwwkB1fZQoaAZoCWgPQwjWGkrtBURwQJSGlFKUaBVNTgFoFkdAoA9A1k1/D3V9lChoBmgJaA9DCG3n+6lxZ21AlIaUUpRoFU04AWgWR0CgD20bcXWOdX2UKGgGaAloD0MIGvfmN0wmb0CUhpRSlGgVTScBaBZHQKAPh1r6+Fl1fZQoaAZoCWgPQwhAFqJD4D5rQJSGlFKUaBVNTgFoFkdAoA/uOAAhjnV9lChoBmgJaA9DCOhKBKp/V3JAlIaUUpRoFU2HAWgWR0CgEEqt5le4dX2UKGgGaAloD0MIml33ViRKcECUhpRSlGgVTbUBaBZHQKAQXyS3b211fZQoaAZoCWgPQwjYne48cXlwQJSGlFKUaBVNRAFoFkdAoBDhHf/FSHV9lChoBmgJaA9DCJFkVu9wGm9AlIaUUpRoFU06AWgWR0CgEtp40Mw2dX2UKGgGaAloD0MIbmx2pDokcUCUhpRSlGgVTTcBaBZHQKAS9pV0cOt1fZQoaAZoCWgPQwgLJCh+jGVsQJSGlFKUaBVNOAFoFkdAoBQtdmg8KXV9lChoBmgJaA9DCL+YLVkV3XBAlIaUUpRoFU02AWgWR0CgFRWzv7WNdX2UKGgGaAloD0MIVg4tsh3TbkCUhpRSlGgVTR4BaBZHQKAVMl/pdKN1fZQoaAZoCWgPQwg3je21IA5rQJSGlFKUaBVNJAFoFkdAoBV+Ya5wwXV9lChoBmgJaA9DCG+fVWZKgWBAlIaUUpRoFU3oA2gWR0CgFYnVG0/odX2UKGgGaAloD0MInMB0WrdUcUCUhpRSlGgVTV8BaBZHQKAWS+GoJiR1fZQoaAZoCWgPQwjOVIhHYmxyQJSGlFKUaBVNTAFoFkdAoBZlzwMH8nV9lChoBmgJaA9DCK6gaYkV43FAlIaUUpRoFU0+AWgWR0CgFoXnZCfIdX2UKGgGaAloD0MIgufew2VUcUCUhpRSlGgVTUkBaBZHQKAXHaN+9al1fZQoaAZoCWgPQwjy0He3stRyQJSGlFKUaBVNUQFoFkdAoBdaH6/IsHV9lChoBmgJaA9DCMzSTs1lt21AlIaUUpRoFU01AWgWR0CgF2rhrFfidX2UKGgGaAloD0MI1e3sK4+IcECUhpRSlGgVTZ4CaBZHQKAX24gA6uJ1fZQoaAZoCWgPQwipM/eQ8OFBQJSGlFKUaBVNBQFoFkdAoBhRT4tYjnV9lChoBmgJaA9DCGgFhqwuPnFAlIaUUpRoFU0gAWgWR0CgGKtTUAktdX2UKGgGaAloD0MIMSWS6GUnckCUhpRSlGgVTQQBaBZHQKAaHAkcCHR1fZQoaAZoCWgPQwg0vi8uFbByQJSGlFKUaBVNCQFoFkdAoBqL2QGOdXV9lChoBmgJaA9DCNUGJ6LfEG9AlIaUUpRoFU1FAWgWR0CgG33IdU83dX2UKGgGaAloD0MIOlj/57DwcECUhpRSlGgVTTsBaBZHQKAbq9lEqlR1fZQoaAZoCWgPQwiAYmTJnKZwQJSGlFKUaBVNxQJoFkdAoBv/UBnzx3V9lChoBmgJaA9DCGfTEcDNOm1AlIaUUpRoFU0qAWgWR0CgHD6q0dBCdX2UKGgGaAloD0MI42vPLAkHcECUhpRSlGgVTTEBaBZHQKAcgULUkOZ1fZQoaAZoCWgPQwi7DP/pBglxQJSGlFKUaBVNUgFoFkdAoCZgL5RCQnV9lChoBmgJaA9DCF3g8ljzeXJAlIaUUpRoFU0gAWgWR0CgJnJ0W/JvdX2UKGgGaAloD0MI++WTFYOacECUhpRSlGgVTS4BaBZHQKAmvp0OmSB1fZQoaAZoCWgPQwjncK32MElyQJSGlFKUaBVNLAFoFkdAoCct4eLeh3V9lChoBmgJaA9DCKBTkJ+NJXFAlIaUUpRoFU1eAWgWR0CgJ1LJr+HadX2UKGgGaAloD0MInFCIgEPLXECUhpRSlGgVTegDaBZHQKAoClBQemx1fZQoaAZoCWgPQwiDE9GvrX9wQJSGlFKUaBVNOgFoFkdAoChdUGVzIXV9lChoBmgJaA9DCAq6vaQxwlJAlIaUUpRoFUuuaBZHQKApoG7jDKp1fZQoaAZoCWgPQwjVtItppp5vQJSGlFKUaBVNNAFoFkdAoCm3N1QqJHV9lChoBmgJaA9DCNl8XBuqHm9AlIaUUpRoFU0sAWgWR0CgKfpVjqfOdX2UKGgGaAloD0MIJc/1fTiOb0CUhpRSlGgVTSYBaBZHQKAqt40Mw111fZQoaAZoCWgPQwhQU8vW+sFqQJSGlFKUaBVNMAFoFkdAoCsc1/DtPnV9lChoBmgJaA9DCJRt4A4UTHBAlIaUUpRoFU0gAWgWR0CgK62OZLIxdX2UKGgGaAloD0MIVrq7zobvcECUhpRSlGgVTScBaBZHQKAsbcVxjrl1fZQoaAZoCWgPQwg6P8VxIINwQJSGlFKUaBVNYwFoFkdAoCyh4QjD9HV9lChoBmgJaA9DCFAAxciSn3BAlIaUUpRoFU1cAWgWR0CgLL/U4JeFdX2UKGgGaAloD0MIeuOkMG/xb0CUhpRSlGgVTRsBaBZHQKAtEM9bHIZ1fZQoaAZoCWgPQwhdwqG3+KRvQJSGlFKUaBVNQQFoFkdAoC1R+F10T3V9lChoBmgJaA9DCCpWDcKcJXJAlIaUUpRoFU0/AWgWR0CgLdgeii7DdX2UKGgGaAloD0MIO420VN7OGECUhpRSlGgVS6loFkdAoC43yZrpJXV9lChoBmgJaA9DCKAX7lyYHHBAlIaUUpRoFU0YAWgWR0CgL2a3AmAtdX2UKGgGaAloD0MIsirCTUa5cECUhpRSlGgVTWEBaBZHQKAvkhdt2s91fZQoaAZoCWgPQwi2SxsOS1BxQJSGlFKUaBVNMgFoFkdAoDBKwpvxY3V9lChoBmgJaA9DCDXTvU7qP3FAlIaUUpRoFU0uAWgWR0CgMUX5WRzSdX2UKGgGaAloD0MIU7KchNLxcECUhpRSlGgVTR8BaBZHQKAxeo4uK4x1fZQoaAZoCWgPQwh3ZRcMLvhiQJSGlFKUaBVN6ANoFkdAoDG4Jb+tKnV9lChoBmgJaA9DCHl1jgEZIHJAlIaUUpRoFU34AWgWR0CgMkf+S8radX2UKGgGaAloD0MIHsGNlC3EbUCUhpRSlGgVTSIBaBZHQKAysyX2M851fZQoaAZoCWgPQwjfbd44KcxsQJSGlFKUaBVNOwFoFkdAoDLcqUeMh3V9lChoBmgJaA9DCPyp8dIN2XBAlIaUUpRoFU0jAWgWR0CgM9uSGJvYdX2UKGgGaAloD0MICOOncW+CbkCUhpRSlGgVTRsBaBZHQKA1ImdAgPp1fZQoaAZoCWgPQwjtuyL4nyRxQJSGlFKUaBVNKAFoFkdAoDU5VjqfOHV9lChoBmgJaA9DCBAk7xwKm3FAlIaUUpRoFU3AAWgWR0CgNVZSWJJodX2UKGgGaAloD0MIKIBiZMlmYECUhpRSlGgVTegDaBZHQKA1sHh0heR1fZQoaAZoCWgPQwjaVx6kJ7JvQJSGlFKUaBVNRgFoFkdAoDa8rAgxJ3V9lChoBmgJaA9DCOknnN3aEm5AlIaUUpRoFU0rAWgWR0CgNyq8+RozdX2UKGgGaAloD0MIPC6qRQR0cUCUhpRSlGgVTSIBaBZHQKA3L/Ue+251fZQoaAZoCWgPQwhlqfV+I8ttQJSGlFKUaBVNUAFoFkdAoDhs5wOvuHV9lChoBmgJaA9DCL4ViQlq5m9AlIaUUpRoFU05AWgWR0CgOJWeYlY2dX2UKGgGaAloD0MIjLtBtJYucECUhpRSlGgVTTwBaBZHQKA5ILux8lZ1fZQoaAZoCWgPQwi7050nHlNsQJSGlFKUaBVNVAFoFkdAoDnW8dxQznV9lChoBmgJaA9DCJkQc0lVeW1AlIaUUpRoFU00AWgWR0CgOl/336AOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-maraoz.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c128f56e9269d931094fc9f4fe2333841240aecb4b65e80d9a28c03218fa993a
|
3 |
+
size 147420
|
ppo-LunarLander-v2-maraoz/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2-maraoz/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe05e8960d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe05e896160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe05e8961f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe05e896280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe05e896310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe05e8963a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe05e896430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe05e8964c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe05e896550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe05e8965e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe05e896670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe05e896700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe05e910720>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675357283378092917,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM9tjxrMaY/dIRCPbrczr7yDvU8g+BUPAAAAAAAAAAAoAZNvuhMwbzZ0Di8AiS4ut/EMD53/I47AACAPwAAgD/dNlC+u9vMvH1NAjoNklU4gVU2PhWtJ7kAAIA/AACAP8aIEr6Otqe8RnLwvNDO0jyaDBE+SACjvQAAgD8AAIA/2iiePeWcsT9L8fg+nkJ+vjGojz0L7a4+AAAAAAAAAADme8A9+POyPpq4oL2HapG+AtHaO8IMQT0AAAAAAAAAAHO93r0pVCy63jYGs1uD6zCBFnG7A32aMwAAgD8AAIA/kzYiPjFOiD82bKo9a22kvt9mZT08TAK9AAAAAAAAAAAAGEi7n3z9u+jVbbyijpw8oAFSPeDigr0AAIA/AACAP3OYjT43gWG9I2jOO6CGibowzsO+i0RAuwAAgD8AAIA/QCfHPfYcULqOj0K3TXRaMbn2mLtm22A2AAAAAAAAgD+a6mu98e2pPq2u8T3pD2G+iIxtPWpLz7wAAAAAAAAAALPyCL2JPzE9ComaPFQvp73fhy088+jsOwAAAAAAAAAAJnKjvRLyLT9c4KI8jO+avgl+2LtqBso9AAAAAAAAAADzRYk+e4weP3bn+r3pxlO+PlRJPY7agr0AAAAAAAAAAMAlsb20CTw+TmCQPck6TL76zFA9MfiHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuRtEa8UNbkCUhpRSlIwBbJRNQgGMAXSUR0Cf8V/oaDPGdX2UKGgGaAloD0MIxjNo6B9BbUCUhpRSlGgVTTABaBZHQJ/xbH7xd6d1fZQoaAZoCWgPQwijAifbwPRrQJSGlFKUaBVNMAFoFkdAn/JefAbhnHV9lChoBmgJaA9DCGa+g5+43GxAlIaUUpRoFU1mAWgWR0Cf8pCTlkpadX2UKGgGaAloD0MIbToCuNk2b0CUhpRSlGgVTdwBaBZHQJ/y1hVlwtJ1fZQoaAZoCWgPQwizz2OU52ZxQJSGlFKUaBVNaQFoFkdAn/TZCOWBz3V9lChoBmgJaA9DCMMOY9JfjW1AlIaUUpRoFU1eAWgWR0Cf9UHvttygdX2UKGgGaAloD0MINlg4SfPocUCUhpRSlGgVTQMBaBZHQJ/1nfJmukl1fZQoaAZoCWgPQwj5Eio4vHJtQJSGlFKUaBVNKQFoFkdAn/kbLpzLfXV9lChoBmgJaA9DCFiR0QEJQHFAlIaUUpRoFU07AWgWR0Cf+TGPxQSBdX2UKGgGaAloD0MIz2VqErwHckCUhpRSlGgVTUcBaBZHQJ/50oCuEEl1fZQoaAZoCWgPQwh6U5EKY0FDQJSGlFKUaBVL7mgWR0Cf+nthuwX7dX2UKGgGaAloD0MIDTM0nshhcUCUhpRSlGgVTZICaBZHQJ/7e8scyWR1fZQoaAZoCWgPQwjOxd/2hAFwQJSGlFKUaBVNFgFoFkdAoAff40uUU3V9lChoBmgJaA9DCLiTiPAvoW5AlIaUUpRoFU1mAWgWR0CgCAduYQardX2UKGgGaAloD0MIrKksCjsIbkCUhpRSlGgVTTsBaBZHQKAIJvqkdmx1fZQoaAZoCWgPQwgj9DP1updvQJSGlFKUaBVNNAFoFkdAoAitKbrkbXV9lChoBmgJaA9DCObPtwULYHBAlIaUUpRoFU2rAWgWR0CgCLqkVN5/dX2UKGgGaAloD0MIKZZbWg3rbkCUhpRSlGgVTVEBaBZHQKAJCnzg/C91fZQoaAZoCWgPQwicbAN3oI5sQJSGlFKUaBVNKQFoFkdAoAmt07r9l3V9lChoBmgJaA9DCDfiyW7mEm9AlIaUUpRoFU0pAWgWR0CgCd4FJQLvdX2UKGgGaAloD0MIRidLrTcQckCUhpRSlGgVTUQBaBZHQKAJ95s0pEx1fZQoaAZoCWgPQwjH1F3ZhX9uQJSGlFKUaBVNNwFoFkdAoAwqHXVbzXV9lChoBmgJaA9DCNmTwOachHFAlIaUUpRoFU0gAWgWR0CgDFn3cpLFdX2UKGgGaAloD0MIJuSDnk2+b0CUhpRSlGgVTVoBaBZHQKANUj1wo9d1fZQoaAZoCWgPQwhjfm5oSuVrQJSGlFKUaBVNdQFoFkdAoA2ThWHUMHV9lChoBmgJaA9DCL2KjA7I3mRAlIaUUpRoFU3oA2gWR0CgDo8TrVvudX2UKGgGaAloD0MIw0fElMisbECUhpRSlGgVTU8BaBZHQKAO8WAwwkB1fZQoaAZoCWgPQwjWGkrtBURwQJSGlFKUaBVNTgFoFkdAoA9A1k1/D3V9lChoBmgJaA9DCG3n+6lxZ21AlIaUUpRoFU04AWgWR0CgD20bcXWOdX2UKGgGaAloD0MIGvfmN0wmb0CUhpRSlGgVTScBaBZHQKAPh1r6+Fl1fZQoaAZoCWgPQwhAFqJD4D5rQJSGlFKUaBVNTgFoFkdAoA/uOAAhjnV9lChoBmgJaA9DCOhKBKp/V3JAlIaUUpRoFU2HAWgWR0CgEEqt5le4dX2UKGgGaAloD0MIml33ViRKcECUhpRSlGgVTbUBaBZHQKAQXyS3b211fZQoaAZoCWgPQwjYne48cXlwQJSGlFKUaBVNRAFoFkdAoBDhHf/FSHV9lChoBmgJaA9DCJFkVu9wGm9AlIaUUpRoFU06AWgWR0CgEtp40Mw2dX2UKGgGaAloD0MIbmx2pDokcUCUhpRSlGgVTTcBaBZHQKAS9pV0cOt1fZQoaAZoCWgPQwgLJCh+jGVsQJSGlFKUaBVNOAFoFkdAoBQtdmg8KXV9lChoBmgJaA9DCL+YLVkV3XBAlIaUUpRoFU02AWgWR0CgFRWzv7WNdX2UKGgGaAloD0MIVg4tsh3TbkCUhpRSlGgVTR4BaBZHQKAVMl/pdKN1fZQoaAZoCWgPQwg3je21IA5rQJSGlFKUaBVNJAFoFkdAoBV+Ya5wwXV9lChoBmgJaA9DCG+fVWZKgWBAlIaUUpRoFU3oA2gWR0CgFYnVG0/odX2UKGgGaAloD0MInMB0WrdUcUCUhpRSlGgVTV8BaBZHQKAWS+GoJiR1fZQoaAZoCWgPQwjOVIhHYmxyQJSGlFKUaBVNTAFoFkdAoBZlzwMH8nV9lChoBmgJaA9DCK6gaYkV43FAlIaUUpRoFU0+AWgWR0CgFoXnZCfIdX2UKGgGaAloD0MIgufew2VUcUCUhpRSlGgVTUkBaBZHQKAXHaN+9al1fZQoaAZoCWgPQwjy0He3stRyQJSGlFKUaBVNUQFoFkdAoBdaH6/IsHV9lChoBmgJaA9DCMzSTs1lt21AlIaUUpRoFU01AWgWR0CgF2rhrFfidX2UKGgGaAloD0MI1e3sK4+IcECUhpRSlGgVTZ4CaBZHQKAX24gA6uJ1fZQoaAZoCWgPQwipM/eQ8OFBQJSGlFKUaBVNBQFoFkdAoBhRT4tYjnV9lChoBmgJaA9DCGgFhqwuPnFAlIaUUpRoFU0gAWgWR0CgGKtTUAktdX2UKGgGaAloD0MIMSWS6GUnckCUhpRSlGgVTQQBaBZHQKAaHAkcCHR1fZQoaAZoCWgPQwg0vi8uFbByQJSGlFKUaBVNCQFoFkdAoBqL2QGOdXV9lChoBmgJaA9DCNUGJ6LfEG9AlIaUUpRoFU1FAWgWR0CgG33IdU83dX2UKGgGaAloD0MIOlj/57DwcECUhpRSlGgVTTsBaBZHQKAbq9lEqlR1fZQoaAZoCWgPQwiAYmTJnKZwQJSGlFKUaBVNxQJoFkdAoBv/UBnzx3V9lChoBmgJaA9DCGfTEcDNOm1AlIaUUpRoFU0qAWgWR0CgHD6q0dBCdX2UKGgGaAloD0MI42vPLAkHcECUhpRSlGgVTTEBaBZHQKAcgULUkOZ1fZQoaAZoCWgPQwi7DP/pBglxQJSGlFKUaBVNUgFoFkdAoCZgL5RCQnV9lChoBmgJaA9DCF3g8ljzeXJAlIaUUpRoFU0gAWgWR0CgJnJ0W/JvdX2UKGgGaAloD0MI++WTFYOacECUhpRSlGgVTS4BaBZHQKAmvp0OmSB1fZQoaAZoCWgPQwjncK32MElyQJSGlFKUaBVNLAFoFkdAoCct4eLeh3V9lChoBmgJaA9DCKBTkJ+NJXFAlIaUUpRoFU1eAWgWR0CgJ1LJr+HadX2UKGgGaAloD0MInFCIgEPLXECUhpRSlGgVTegDaBZHQKAoClBQemx1fZQoaAZoCWgPQwiDE9GvrX9wQJSGlFKUaBVNOgFoFkdAoChdUGVzIXV9lChoBmgJaA9DCAq6vaQxwlJAlIaUUpRoFUuuaBZHQKApoG7jDKp1fZQoaAZoCWgPQwjVtItppp5vQJSGlFKUaBVNNAFoFkdAoCm3N1QqJHV9lChoBmgJaA9DCNl8XBuqHm9AlIaUUpRoFU0sAWgWR0CgKfpVjqfOdX2UKGgGaAloD0MIJc/1fTiOb0CUhpRSlGgVTSYBaBZHQKAqt40Mw111fZQoaAZoCWgPQwhQU8vW+sFqQJSGlFKUaBVNMAFoFkdAoCsc1/DtPnV9lChoBmgJaA9DCJRt4A4UTHBAlIaUUpRoFU0gAWgWR0CgK62OZLIxdX2UKGgGaAloD0MIVrq7zobvcECUhpRSlGgVTScBaBZHQKAsbcVxjrl1fZQoaAZoCWgPQwg6P8VxIINwQJSGlFKUaBVNYwFoFkdAoCyh4QjD9HV9lChoBmgJaA9DCFAAxciSn3BAlIaUUpRoFU1cAWgWR0CgLL/U4JeFdX2UKGgGaAloD0MIeuOkMG/xb0CUhpRSlGgVTRsBaBZHQKAtEM9bHIZ1fZQoaAZoCWgPQwhdwqG3+KRvQJSGlFKUaBVNQQFoFkdAoC1R+F10T3V9lChoBmgJaA9DCCpWDcKcJXJAlIaUUpRoFU0/AWgWR0CgLdgeii7DdX2UKGgGaAloD0MIO420VN7OGECUhpRSlGgVS6loFkdAoC43yZrpJXV9lChoBmgJaA9DCKAX7lyYHHBAlIaUUpRoFU0YAWgWR0CgL2a3AmAtdX2UKGgGaAloD0MIsirCTUa5cECUhpRSlGgVTWEBaBZHQKAvkhdt2s91fZQoaAZoCWgPQwi2SxsOS1BxQJSGlFKUaBVNMgFoFkdAoDBKwpvxY3V9lChoBmgJaA9DCDXTvU7qP3FAlIaUUpRoFU0uAWgWR0CgMUX5WRzSdX2UKGgGaAloD0MIU7KchNLxcECUhpRSlGgVTR8BaBZHQKAxeo4uK4x1fZQoaAZoCWgPQwh3ZRcMLvhiQJSGlFKUaBVN6ANoFkdAoDG4Jb+tKnV9lChoBmgJaA9DCHl1jgEZIHJAlIaUUpRoFU34AWgWR0CgMkf+S8radX2UKGgGaAloD0MIHsGNlC3EbUCUhpRSlGgVTSIBaBZHQKAysyX2M851fZQoaAZoCWgPQwjfbd44KcxsQJSGlFKUaBVNOwFoFkdAoDLcqUeMh3V9lChoBmgJaA9DCPyp8dIN2XBAlIaUUpRoFU0jAWgWR0CgM9uSGJvYdX2UKGgGaAloD0MICOOncW+CbkCUhpRSlGgVTRsBaBZHQKA1ImdAgPp1fZQoaAZoCWgPQwjtuyL4nyRxQJSGlFKUaBVNKAFoFkdAoDU5VjqfOHV9lChoBmgJaA9DCBAk7xwKm3FAlIaUUpRoFU3AAWgWR0CgNVZSWJJodX2UKGgGaAloD0MIKIBiZMlmYECUhpRSlGgVTegDaBZHQKA1sHh0heR1fZQoaAZoCWgPQwjaVx6kJ7JvQJSGlFKUaBVNRgFoFkdAoDa8rAgxJ3V9lChoBmgJaA9DCOknnN3aEm5AlIaUUpRoFU0rAWgWR0CgNyq8+RozdX2UKGgGaAloD0MIPC6qRQR0cUCUhpRSlGgVTSIBaBZHQKA3L/Ue+251fZQoaAZoCWgPQwhlqfV+I8ttQJSGlFKUaBVNUAFoFkdAoDhs5wOvuHV9lChoBmgJaA9DCL4ViQlq5m9AlIaUUpRoFU05AWgWR0CgOJWeYlY2dX2UKGgGaAloD0MIjLtBtJYucECUhpRSlGgVTTwBaBZHQKA5ILux8lZ1fZQoaAZoCWgPQwi7050nHlNsQJSGlFKUaBVNVAFoFkdAoDnW8dxQznV9lChoBmgJaA9DCJkQc0lVeW1AlIaUUpRoFU00AWgWR0CgOl/336AOdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2-maraoz/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c761ac0ba03fdeddc283fe770d4db75afa12ffcd2b30eeed9971f003afe3db37
|
3 |
+
size 87929
|
ppo-LunarLander-v2-maraoz/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d76fb6cffd6d3a4e2761c0ad0623b63de9d2ebe2e2a1241372054c31e1ad342
|
3 |
+
size 43393
|
ppo-LunarLander-v2-maraoz/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-maraoz/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.3634735683472, "std_reward": 20.82003291734795, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T17:25:04.222188"}
|