manuel-couto-pintos commited on
Commit
58a81db
·
verified ·
1 Parent(s): 1f781ae

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: manuel-couto-pintos/roberta_erisk
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:50881
13
+ - loss:TripletLoss
14
+ widget:
15
+ - source_sentence: I smoked weed for the first time ever a couple days ago, how long
16
+ until it's out of my system?
17
+ sentences:
18
+ - If I haven't smoked weed in a long time and smoked 1 day, how long will it be
19
+ in my urine?
20
+ - Where can we find best delay pedal?
21
+ - How long does it take for an avid weed smoker to pass a urine drug test?
22
+ - source_sentence: What are the visiting places in coorg?
23
+ sentences:
24
+ - How can I find a co-working space in Gurgaon?
25
+ - What are the places to visit in coorg?
26
+ - What are your favourite celebrity cookbooks?
27
+ - source_sentence: What is the best used car to get under 5k?
28
+ sentences:
29
+ - What's the best used car for under 5k?
30
+ - What do you think about RBI's new move of banning 500 and 1000 notes?
31
+ - Which is the best car to buy under 6 lakhs?
32
+ - source_sentence: Which exercises can I do at home to reduce belly fat?
33
+ sentences:
34
+ - What exercise we can do to reduce belly fat at home?
35
+ - What is a first time home buyer?
36
+ - My upper body is in shape but my thighs are very fatty and big ...so how can I
37
+ reduce my thighs .I am doing running of 3km daily only?
38
+ - source_sentence: Which is the best affiliate program?
39
+ sentences:
40
+ - How can I learn to make good coffee at home?
41
+ - What are the best affiliate networks in the UK?
42
+ - What are the best affiliate programs?
43
+ ---
44
+
45
+ # SentenceTransformer based on manuel-couto-pintos/roberta_erisk
46
+
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [manuel-couto-pintos/roberta_erisk](https://huggingface.co/manuel-couto-pintos/roberta_erisk). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [manuel-couto-pintos/roberta_erisk](https://huggingface.co/manuel-couto-pintos/roberta_erisk) <!-- at revision 9aa8180ee595fe69a8d23c06dc5ee405f4f5d5ac -->
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Output Dimensionality:** 768 tokens
56
+ - **Similarity Function:** Cosine Similarity
57
+ <!-- - **Training Dataset:** Unknown -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
+
69
+ ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
72
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ )
74
+ ```
75
+
76
+ ## Usage
77
+
78
+ ### Direct Usage (Sentence Transformers)
79
+
80
+ First install the Sentence Transformers library:
81
+
82
+ ```bash
83
+ pip install -U sentence-transformers
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+ ```python
88
+ from sentence_transformers import SentenceTransformer
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SentenceTransformer("manuel-couto-pintos/roberta_erisk_sts")
92
+ # Run inference
93
+ sentences = [
94
+ 'Which is the best affiliate program?',
95
+ 'What are the best affiliate programs?',
96
+ 'What are the best affiliate networks in the UK?',
97
+ ]
98
+ embeddings = model.encode(sentences)
99
+ print(embeddings.shape)
100
+ # [3, 768]
101
+
102
+ # Get the similarity scores for the embeddings
103
+ similarities = model.similarity(embeddings, embeddings)
104
+ print(similarities.shape)
105
+ # [3, 3]
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Dataset
147
+
148
+ #### Unnamed Dataset
149
+
150
+
151
+ * Size: 50,881 training samples
152
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
153
+ * Approximate statistics based on the first 1000 samples:
154
+ | | sentence_0 | sentence_1 | sentence_2 |
155
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
156
+ | type | string | string | string |
157
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.77 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.82 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.96 tokens</li><li>max: 59 tokens</li></ul> |
158
+ * Samples:
159
+ | sentence_0 | sentence_1 | sentence_2 |
160
+ |:---------------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|
161
+ | <code>What is a good definition of Quora?</code> | <code>What is the best definition of Quora?</code> | <code>What is Quora address?</code> |
162
+ | <code>How can I make myself appear offline on facebook?</code> | <code>How do you make sure to appear as offline on Facebook?</code> | <code>How can I get Facebook to remember to keep chat offline?</code> |
163
+ | <code>How do I gain some healthy weight?</code> | <code>What is the best way for underweight to gain weight?</code> | <code>My boyfriend doesn't eat a lot. What are some ways to help him gain weight fast? He's 5'7 120lbs</code> |
164
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
165
+ ```json
166
+ {
167
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
168
+ "triplet_margin": 5
169
+ }
170
+ ```
171
+
172
+ ### Training Hyperparameters
173
+ #### Non-Default Hyperparameters
174
+
175
+ - `per_device_train_batch_size`: 10
176
+ - `per_device_eval_batch_size`: 10
177
+ - `num_train_epochs`: 10
178
+ - `multi_dataset_batch_sampler`: round_robin
179
+
180
+ #### All Hyperparameters
181
+ <details><summary>Click to expand</summary>
182
+
183
+ - `overwrite_output_dir`: False
184
+ - `do_predict`: False
185
+ - `eval_strategy`: no
186
+ - `prediction_loss_only`: True
187
+ - `per_device_train_batch_size`: 10
188
+ - `per_device_eval_batch_size`: 10
189
+ - `per_gpu_train_batch_size`: None
190
+ - `per_gpu_eval_batch_size`: None
191
+ - `gradient_accumulation_steps`: 1
192
+ - `eval_accumulation_steps`: None
193
+ - `torch_empty_cache_steps`: None
194
+ - `learning_rate`: 5e-05
195
+ - `weight_decay`: 0.0
196
+ - `adam_beta1`: 0.9
197
+ - `adam_beta2`: 0.999
198
+ - `adam_epsilon`: 1e-08
199
+ - `max_grad_norm`: 1
200
+ - `num_train_epochs`: 10
201
+ - `max_steps`: -1
202
+ - `lr_scheduler_type`: linear
203
+ - `lr_scheduler_kwargs`: {}
204
+ - `warmup_ratio`: 0.0
205
+ - `warmup_steps`: 0
206
+ - `log_level`: passive
207
+ - `log_level_replica`: warning
208
+ - `log_on_each_node`: True
209
+ - `logging_nan_inf_filter`: True
210
+ - `save_safetensors`: True
211
+ - `save_on_each_node`: False
212
+ - `save_only_model`: False
213
+ - `restore_callback_states_from_checkpoint`: False
214
+ - `no_cuda`: False
215
+ - `use_cpu`: False
216
+ - `use_mps_device`: False
217
+ - `seed`: 42
218
+ - `data_seed`: None
219
+ - `jit_mode_eval`: False
220
+ - `use_ipex`: False
221
+ - `bf16`: False
222
+ - `fp16`: False
223
+ - `fp16_opt_level`: O1
224
+ - `half_precision_backend`: auto
225
+ - `bf16_full_eval`: False
226
+ - `fp16_full_eval`: False
227
+ - `tf32`: None
228
+ - `local_rank`: 0
229
+ - `ddp_backend`: None
230
+ - `tpu_num_cores`: None
231
+ - `tpu_metrics_debug`: False
232
+ - `debug`: []
233
+ - `dataloader_drop_last`: False
234
+ - `dataloader_num_workers`: 0
235
+ - `dataloader_prefetch_factor`: None
236
+ - `past_index`: -1
237
+ - `disable_tqdm`: False
238
+ - `remove_unused_columns`: True
239
+ - `label_names`: None
240
+ - `load_best_model_at_end`: False
241
+ - `ignore_data_skip`: False
242
+ - `fsdp`: []
243
+ - `fsdp_min_num_params`: 0
244
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
245
+ - `fsdp_transformer_layer_cls_to_wrap`: None
246
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
247
+ - `deepspeed`: None
248
+ - `label_smoothing_factor`: 0.0
249
+ - `optim`: adamw_torch
250
+ - `optim_args`: None
251
+ - `adafactor`: False
252
+ - `group_by_length`: False
253
+ - `length_column_name`: length
254
+ - `ddp_find_unused_parameters`: None
255
+ - `ddp_bucket_cap_mb`: None
256
+ - `ddp_broadcast_buffers`: False
257
+ - `dataloader_pin_memory`: True
258
+ - `dataloader_persistent_workers`: False
259
+ - `skip_memory_metrics`: True
260
+ - `use_legacy_prediction_loop`: False
261
+ - `push_to_hub`: False
262
+ - `resume_from_checkpoint`: None
263
+ - `hub_model_id`: None
264
+ - `hub_strategy`: every_save
265
+ - `hub_private_repo`: False
266
+ - `hub_always_push`: False
267
+ - `gradient_checkpointing`: False
268
+ - `gradient_checkpointing_kwargs`: None
269
+ - `include_inputs_for_metrics`: False
270
+ - `eval_do_concat_batches`: True
271
+ - `fp16_backend`: auto
272
+ - `push_to_hub_model_id`: None
273
+ - `push_to_hub_organization`: None
274
+ - `mp_parameters`:
275
+ - `auto_find_batch_size`: False
276
+ - `full_determinism`: False
277
+ - `torchdynamo`: None
278
+ - `ray_scope`: last
279
+ - `ddp_timeout`: 1800
280
+ - `torch_compile`: False
281
+ - `torch_compile_backend`: None
282
+ - `torch_compile_mode`: None
283
+ - `dispatch_batches`: None
284
+ - `split_batches`: None
285
+ - `include_tokens_per_second`: False
286
+ - `include_num_input_tokens_seen`: False
287
+ - `neftune_noise_alpha`: None
288
+ - `optim_target_modules`: None
289
+ - `batch_eval_metrics`: False
290
+ - `eval_on_start`: False
291
+ - `eval_use_gather_object`: False
292
+ - `batch_sampler`: batch_sampler
293
+ - `multi_dataset_batch_sampler`: round_robin
294
+
295
+ </details>
296
+
297
+ ### Training Logs
298
+ <details><summary>Click to expand</summary>
299
+
300
+ | Epoch | Step | Training Loss |
301
+ |:------:|:-----:|:-------------:|
302
+ | 0.0983 | 500 | 4.3807 |
303
+ | 0.1965 | 1000 | 2.5872 |
304
+ | 0.2948 | 1500 | 1.7484 |
305
+ | 0.3930 | 2000 | 1.2649 |
306
+ | 0.4913 | 2500 | 1.0219 |
307
+ | 0.5895 | 3000 | 0.8703 |
308
+ | 0.6878 | 3500 | 0.771 |
309
+ | 0.7860 | 4000 | 0.655 |
310
+ | 0.8843 | 4500 | 0.6547 |
311
+ | 0.9825 | 5000 | 0.5772 |
312
+ | 1.0808 | 5500 | 0.5628 |
313
+ | 1.1790 | 6000 | 0.5163 |
314
+ | 1.2773 | 6500 | 0.4871 |
315
+ | 1.3755 | 7000 | 0.4842 |
316
+ | 1.4738 | 7500 | 0.4316 |
317
+ | 1.5720 | 8000 | 0.4199 |
318
+ | 1.6703 | 8500 | 0.3554 |
319
+ | 1.7685 | 9000 | 0.3467 |
320
+ | 1.8668 | 9500 | 0.3591 |
321
+ | 1.9650 | 10000 | 0.3356 |
322
+ | 2.0633 | 10500 | 0.3281 |
323
+ | 2.1615 | 11000 | 0.3149 |
324
+ | 2.2598 | 11500 | 0.2767 |
325
+ | 2.3580 | 12000 | 0.2849 |
326
+ | 2.4563 | 12500 | 0.244 |
327
+ | 2.5545 | 13000 | 0.2416 |
328
+ | 2.6528 | 13500 | 0.2008 |
329
+ | 2.7510 | 14000 | 0.1718 |
330
+ | 2.8493 | 14500 | 0.188 |
331
+ | 2.9475 | 15000 | 0.1656 |
332
+ | 3.0458 | 15500 | 0.1522 |
333
+ | 3.1440 | 16000 | 0.144 |
334
+ | 3.2423 | 16500 | 0.1329 |
335
+ | 3.3405 | 17000 | 0.1431 |
336
+ | 3.4388 | 17500 | 0.128 |
337
+ | 3.5370 | 18000 | 0.1251 |
338
+ | 3.6353 | 18500 | 0.0921 |
339
+ | 3.7335 | 19000 | 0.0882 |
340
+ | 3.8318 | 19500 | 0.1087 |
341
+ | 3.9300 | 20000 | 0.0819 |
342
+ | 4.0283 | 20500 | 0.0916 |
343
+ | 4.1265 | 21000 | 0.0837 |
344
+ | 4.2248 | 21500 | 0.0855 |
345
+ | 4.3230 | 22000 | 0.0727 |
346
+ | 4.4213 | 22500 | 0.0772 |
347
+ | 4.5196 | 23000 | 0.0676 |
348
+ | 4.6178 | 23500 | 0.0597 |
349
+ | 4.7161 | 24000 | 0.0555 |
350
+ | 4.8143 | 24500 | 0.0613 |
351
+ | 4.9126 | 25000 | 0.0589 |
352
+ | 5.0108 | 25500 | 0.0503 |
353
+ | 5.1091 | 26000 | 0.0546 |
354
+ | 5.2073 | 26500 | 0.0446 |
355
+ | 5.3056 | 27000 | 0.0591 |
356
+ | 5.4038 | 27500 | 0.0431 |
357
+ | 5.5021 | 28000 | 0.0402 |
358
+ | 5.6003 | 28500 | 0.0354 |
359
+ | 5.6986 | 29000 | 0.0405 |
360
+ | 5.7968 | 29500 | 0.0308 |
361
+ | 5.8951 | 30000 | 0.0363 |
362
+ | 5.9933 | 30500 | 0.0365 |
363
+ | 6.0916 | 31000 | 0.0333 |
364
+ | 6.1898 | 31500 | 0.0238 |
365
+ | 6.2881 | 32000 | 0.0372 |
366
+ | 6.3863 | 32500 | 0.0331 |
367
+ | 6.4846 | 33000 | 0.0253 |
368
+ | 6.5828 | 33500 | 0.0315 |
369
+ | 6.6811 | 34000 | 0.0193 |
370
+ | 6.7793 | 34500 | 0.0239 |
371
+ | 6.8776 | 35000 | 0.0201 |
372
+ | 6.9758 | 35500 | 0.0213 |
373
+ | 7.0741 | 36000 | 0.0187 |
374
+ | 7.1723 | 36500 | 0.0125 |
375
+ | 7.2706 | 37000 | 0.0151 |
376
+ | 7.3688 | 37500 | 0.0208 |
377
+ | 7.4671 | 38000 | 0.0101 |
378
+ | 7.5653 | 38500 | 0.0191 |
379
+ | 7.6636 | 39000 | 0.0125 |
380
+ | 7.7618 | 39500 | 0.0136 |
381
+ | 7.8601 | 40000 | 0.0135 |
382
+ | 7.9583 | 40500 | 0.0118 |
383
+ | 8.0566 | 41000 | 0.012 |
384
+ | 8.1548 | 41500 | 0.0079 |
385
+ | 8.2531 | 42000 | 0.0105 |
386
+ | 8.3513 | 42500 | 0.0094 |
387
+ | 8.4496 | 43000 | 0.0079 |
388
+ | 8.5478 | 43500 | 0.0118 |
389
+ | 8.6461 | 44000 | 0.0105 |
390
+ | 8.7444 | 44500 | 0.0058 |
391
+ | 8.8426 | 45000 | 0.013 |
392
+ | 8.9409 | 45500 | 0.0065 |
393
+ | 9.0391 | 46000 | 0.0089 |
394
+ | 9.1374 | 46500 | 0.0031 |
395
+ | 9.2356 | 47000 | 0.008 |
396
+ | 9.3339 | 47500 | 0.0065 |
397
+ | 9.4321 | 48000 | 0.0052 |
398
+ | 9.5304 | 48500 | 0.0066 |
399
+ | 9.6286 | 49000 | 0.0039 |
400
+ | 9.7269 | 49500 | 0.004 |
401
+ | 9.8251 | 50000 | 0.0051 |
402
+ | 9.9234 | 50500 | 0.003 |
403
+
404
+ </details>
405
+
406
+ ### Framework Versions
407
+ - Python: 3.10.14
408
+ - Sentence Transformers: 3.0.1
409
+ - Transformers: 4.44.2
410
+ - PyTorch: 2.0.1+cu117
411
+ - Accelerate: 0.32.0
412
+ - Datasets: 2.20.0
413
+ - Tokenizers: 0.19.1
414
+
415
+ ## Citation
416
+
417
+ ### BibTeX
418
+
419
+ #### Sentence Transformers
420
+ ```bibtex
421
+ @inproceedings{reimers-2019-sentence-bert,
422
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
423
+ author = "Reimers, Nils and Gurevych, Iryna",
424
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
425
+ month = "11",
426
+ year = "2019",
427
+ publisher = "Association for Computational Linguistics",
428
+ url = "https://arxiv.org/abs/1908.10084",
429
+ }
430
+ ```
431
+
432
+ #### TripletLoss
433
+ ```bibtex
434
+ @misc{hermans2017defense,
435
+ title={In Defense of the Triplet Loss for Person Re-Identification},
436
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
437
+ year={2017},
438
+ eprint={1703.07737},
439
+ archivePrefix={arXiv},
440
+ primaryClass={cs.CV}
441
+ }
442
+ ```
443
+
444
+ <!--
445
+ ## Glossary
446
+
447
+ *Clearly define terms in order to be accessible across audiences.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Authors
452
+
453
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
454
+ -->
455
+
456
+ <!--
457
+ ## Model Card Contact
458
+
459
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
460
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "manuel-couto-pintos/roberta_erisk",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "tokenizer_class": "RobertaTokenizerFast",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.0.1+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd182654ae1388dcdde117c6ce23e860d27f17777530978c7fc087aa7cc2fd69
3
+ size 498604904
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff