manu commited on
Commit
92eec1a
1 Parent(s): c60bc28

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colqwen2-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colqwen2-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc856312174dc99a4c7f88a2c54d9590a3b3f5b5a86e2728d7138c7f4758c6d5
3
+ size 74018232
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-2310/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./models/colqwen2_base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-2310/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/colqwen2_base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
checkpoint-2310/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc856312174dc99a4c7f88a2c54d9590a3b3f5b5a86e2728d7138c7f4758c6d5
3
+ size 74018232
checkpoint-2310/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fc33e4e0f694908053e47d9c32ed593fa555801312d8d9d46b3a748b41bba0
3
+ size 148262384
checkpoint-2310/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b34c39407e5982e3760c227b18a85561bb7fb0c385276cbb7370cab74802ef2f
3
+ size 14244
checkpoint-2310/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e687ca3f782277f406bcba194795e34522524b1c24163a5c1c24714bf5f94a0d
3
+ size 1064
checkpoint-2310/trainer_state.json ADDED
@@ -0,0 +1,1834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 100,
6
+ "global_step": 2310,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.021645021645021644,
13
+ "grad_norm": 2.59375,
14
+ "learning_rate": 5e-05,
15
+ "loss": 0.9442,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.04329004329004329,
20
+ "grad_norm": 1.109375,
21
+ "learning_rate": 0.0001,
22
+ "loss": 0.6729,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.06493506493506493,
27
+ "grad_norm": 0.765625,
28
+ "learning_rate": 0.00015,
29
+ "loss": 0.5235,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.08658008658008658,
34
+ "grad_norm": 0.87890625,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.3883,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.10822510822510822,
41
+ "grad_norm": 0.8203125,
42
+ "learning_rate": 0.00025,
43
+ "loss": 0.3269,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.12987012987012986,
48
+ "grad_norm": 0.5,
49
+ "learning_rate": 0.0003,
50
+ "loss": 0.2779,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.15151515151515152,
55
+ "grad_norm": 0.54296875,
56
+ "learning_rate": 0.00035,
57
+ "loss": 0.2607,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.17316017316017315,
62
+ "grad_norm": 0.78515625,
63
+ "learning_rate": 0.0004,
64
+ "loss": 0.246,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.19480519480519481,
69
+ "grad_norm": 0.474609375,
70
+ "learning_rate": 0.00045000000000000004,
71
+ "loss": 0.2469,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.21645021645021645,
76
+ "grad_norm": 0.55078125,
77
+ "learning_rate": 0.0005,
78
+ "loss": 0.2327,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.21645021645021645,
83
+ "eval_loss": 0.1517176628112793,
84
+ "eval_runtime": 23.1527,
85
+ "eval_samples_per_second": 21.596,
86
+ "eval_steps_per_second": 0.691,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 0.23809523809523808,
91
+ "grad_norm": 0.51953125,
92
+ "learning_rate": 0.000497737556561086,
93
+ "loss": 0.231,
94
+ "step": 110
95
+ },
96
+ {
97
+ "epoch": 0.2597402597402597,
98
+ "grad_norm": 0.46875,
99
+ "learning_rate": 0.000495475113122172,
100
+ "loss": 0.214,
101
+ "step": 120
102
+ },
103
+ {
104
+ "epoch": 0.2813852813852814,
105
+ "grad_norm": 0.4453125,
106
+ "learning_rate": 0.000493212669683258,
107
+ "loss": 0.2164,
108
+ "step": 130
109
+ },
110
+ {
111
+ "epoch": 0.30303030303030304,
112
+ "grad_norm": 0.470703125,
113
+ "learning_rate": 0.0004909502262443439,
114
+ "loss": 0.2327,
115
+ "step": 140
116
+ },
117
+ {
118
+ "epoch": 0.3246753246753247,
119
+ "grad_norm": 0.392578125,
120
+ "learning_rate": 0.0004886877828054299,
121
+ "loss": 0.2104,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.3463203463203463,
126
+ "grad_norm": 0.4765625,
127
+ "learning_rate": 0.00048642533936651587,
128
+ "loss": 0.2249,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.36796536796536794,
133
+ "grad_norm": 0.3125,
134
+ "learning_rate": 0.0004841628959276018,
135
+ "loss": 0.2179,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.38961038961038963,
140
+ "grad_norm": 0.453125,
141
+ "learning_rate": 0.0004819004524886878,
142
+ "loss": 0.2174,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.41125541125541126,
147
+ "grad_norm": 0.5390625,
148
+ "learning_rate": 0.0004796380090497738,
149
+ "loss": 0.2159,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.4329004329004329,
154
+ "grad_norm": 0.392578125,
155
+ "learning_rate": 0.0004773755656108598,
156
+ "loss": 0.2166,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.4329004329004329,
161
+ "eval_loss": 0.13433273136615753,
162
+ "eval_runtime": 18.3553,
163
+ "eval_samples_per_second": 27.24,
164
+ "eval_steps_per_second": 0.872,
165
+ "step": 200
166
+ },
167
+ {
168
+ "epoch": 0.45454545454545453,
169
+ "grad_norm": 0.44921875,
170
+ "learning_rate": 0.00047511312217194567,
171
+ "loss": 0.2232,
172
+ "step": 210
173
+ },
174
+ {
175
+ "epoch": 0.47619047619047616,
176
+ "grad_norm": 0.447265625,
177
+ "learning_rate": 0.00047285067873303167,
178
+ "loss": 0.2034,
179
+ "step": 220
180
+ },
181
+ {
182
+ "epoch": 0.49783549783549785,
183
+ "grad_norm": 0.36328125,
184
+ "learning_rate": 0.00047058823529411766,
185
+ "loss": 0.2222,
186
+ "step": 230
187
+ },
188
+ {
189
+ "epoch": 0.5194805194805194,
190
+ "grad_norm": 0.68359375,
191
+ "learning_rate": 0.00046832579185520365,
192
+ "loss": 0.2043,
193
+ "step": 240
194
+ },
195
+ {
196
+ "epoch": 0.5411255411255411,
197
+ "grad_norm": 0.431640625,
198
+ "learning_rate": 0.0004660633484162896,
199
+ "loss": 0.2054,
200
+ "step": 250
201
+ },
202
+ {
203
+ "epoch": 0.5627705627705628,
204
+ "grad_norm": 0.38671875,
205
+ "learning_rate": 0.0004638009049773756,
206
+ "loss": 0.1922,
207
+ "step": 260
208
+ },
209
+ {
210
+ "epoch": 0.5844155844155844,
211
+ "grad_norm": 0.349609375,
212
+ "learning_rate": 0.0004615384615384616,
213
+ "loss": 0.196,
214
+ "step": 270
215
+ },
216
+ {
217
+ "epoch": 0.6060606060606061,
218
+ "grad_norm": 0.37109375,
219
+ "learning_rate": 0.0004592760180995475,
220
+ "loss": 0.2008,
221
+ "step": 280
222
+ },
223
+ {
224
+ "epoch": 0.6277056277056277,
225
+ "grad_norm": 0.431640625,
226
+ "learning_rate": 0.00045701357466063346,
227
+ "loss": 0.1983,
228
+ "step": 290
229
+ },
230
+ {
231
+ "epoch": 0.6493506493506493,
232
+ "grad_norm": 0.4609375,
233
+ "learning_rate": 0.00045475113122171945,
234
+ "loss": 0.1964,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 0.6493506493506493,
239
+ "eval_loss": 0.12437203526496887,
240
+ "eval_runtime": 19.6174,
241
+ "eval_samples_per_second": 25.488,
242
+ "eval_steps_per_second": 0.816,
243
+ "step": 300
244
+ },
245
+ {
246
+ "epoch": 0.670995670995671,
247
+ "grad_norm": 0.369140625,
248
+ "learning_rate": 0.00045248868778280545,
249
+ "loss": 0.1922,
250
+ "step": 310
251
+ },
252
+ {
253
+ "epoch": 0.6926406926406926,
254
+ "grad_norm": 0.3671875,
255
+ "learning_rate": 0.00045022624434389144,
256
+ "loss": 0.1912,
257
+ "step": 320
258
+ },
259
+ {
260
+ "epoch": 0.7142857142857143,
261
+ "grad_norm": 0.435546875,
262
+ "learning_rate": 0.0004479638009049774,
263
+ "loss": 0.1927,
264
+ "step": 330
265
+ },
266
+ {
267
+ "epoch": 0.7359307359307359,
268
+ "grad_norm": 0.375,
269
+ "learning_rate": 0.0004457013574660634,
270
+ "loss": 0.1919,
271
+ "step": 340
272
+ },
273
+ {
274
+ "epoch": 0.7575757575757576,
275
+ "grad_norm": 0.365234375,
276
+ "learning_rate": 0.0004434389140271493,
277
+ "loss": 0.1941,
278
+ "step": 350
279
+ },
280
+ {
281
+ "epoch": 0.7792207792207793,
282
+ "grad_norm": 0.50390625,
283
+ "learning_rate": 0.0004411764705882353,
284
+ "loss": 0.1939,
285
+ "step": 360
286
+ },
287
+ {
288
+ "epoch": 0.8008658008658008,
289
+ "grad_norm": 0.9765625,
290
+ "learning_rate": 0.00043891402714932125,
291
+ "loss": 0.2017,
292
+ "step": 370
293
+ },
294
+ {
295
+ "epoch": 0.8225108225108225,
296
+ "grad_norm": 0.240234375,
297
+ "learning_rate": 0.00043665158371040724,
298
+ "loss": 0.2463,
299
+ "step": 380
300
+ },
301
+ {
302
+ "epoch": 0.8441558441558441,
303
+ "grad_norm": 0.322265625,
304
+ "learning_rate": 0.00043438914027149324,
305
+ "loss": 0.2453,
306
+ "step": 390
307
+ },
308
+ {
309
+ "epoch": 0.8658008658008658,
310
+ "grad_norm": 0.26953125,
311
+ "learning_rate": 0.00043212669683257923,
312
+ "loss": 0.2457,
313
+ "step": 400
314
+ },
315
+ {
316
+ "epoch": 0.8658008658008658,
317
+ "eval_loss": 0.15143588185310364,
318
+ "eval_runtime": 20.4597,
319
+ "eval_samples_per_second": 24.438,
320
+ "eval_steps_per_second": 0.782,
321
+ "step": 400
322
+ },
323
+ {
324
+ "epoch": 0.8874458874458875,
325
+ "grad_norm": 0.28515625,
326
+ "learning_rate": 0.00042986425339366517,
327
+ "loss": 0.228,
328
+ "step": 410
329
+ },
330
+ {
331
+ "epoch": 0.9090909090909091,
332
+ "grad_norm": 0.2177734375,
333
+ "learning_rate": 0.0004276018099547511,
334
+ "loss": 0.2139,
335
+ "step": 420
336
+ },
337
+ {
338
+ "epoch": 0.9307359307359307,
339
+ "grad_norm": 0.271484375,
340
+ "learning_rate": 0.0004253393665158371,
341
+ "loss": 0.2224,
342
+ "step": 430
343
+ },
344
+ {
345
+ "epoch": 0.9523809523809523,
346
+ "grad_norm": 0.375,
347
+ "learning_rate": 0.0004230769230769231,
348
+ "loss": 0.2108,
349
+ "step": 440
350
+ },
351
+ {
352
+ "epoch": 0.974025974025974,
353
+ "grad_norm": 0.322265625,
354
+ "learning_rate": 0.00042081447963800904,
355
+ "loss": 0.2003,
356
+ "step": 450
357
+ },
358
+ {
359
+ "epoch": 0.9956709956709957,
360
+ "grad_norm": 0.47265625,
361
+ "learning_rate": 0.00041855203619909503,
362
+ "loss": 0.1827,
363
+ "step": 460
364
+ },
365
+ {
366
+ "epoch": 1.0173160173160174,
367
+ "grad_norm": 0.53515625,
368
+ "learning_rate": 0.000416289592760181,
369
+ "loss": 0.1791,
370
+ "step": 470
371
+ },
372
+ {
373
+ "epoch": 1.0389610389610389,
374
+ "grad_norm": 1.84375,
375
+ "learning_rate": 0.00041402714932126697,
376
+ "loss": 0.1836,
377
+ "step": 480
378
+ },
379
+ {
380
+ "epoch": 1.0606060606060606,
381
+ "grad_norm": 0.36328125,
382
+ "learning_rate": 0.0004117647058823529,
383
+ "loss": 0.1804,
384
+ "step": 490
385
+ },
386
+ {
387
+ "epoch": 1.0822510822510822,
388
+ "grad_norm": 0.375,
389
+ "learning_rate": 0.0004095022624434389,
390
+ "loss": 0.1977,
391
+ "step": 500
392
+ },
393
+ {
394
+ "epoch": 1.0822510822510822,
395
+ "eval_loss": 0.1261492371559143,
396
+ "eval_runtime": 20.0605,
397
+ "eval_samples_per_second": 24.925,
398
+ "eval_steps_per_second": 0.798,
399
+ "step": 500
400
+ },
401
+ {
402
+ "epoch": 1.103896103896104,
403
+ "grad_norm": 32.5,
404
+ "learning_rate": 0.0004072398190045249,
405
+ "loss": 0.7592,
406
+ "step": 510
407
+ },
408
+ {
409
+ "epoch": 1.1255411255411256,
410
+ "grad_norm": 1.0703125,
411
+ "learning_rate": 0.0004049773755656109,
412
+ "loss": 0.614,
413
+ "step": 520
414
+ },
415
+ {
416
+ "epoch": 1.1471861471861473,
417
+ "grad_norm": 3.71875,
418
+ "learning_rate": 0.0004027149321266968,
419
+ "loss": 0.2444,
420
+ "step": 530
421
+ },
422
+ {
423
+ "epoch": 1.1688311688311688,
424
+ "grad_norm": 1.2421875,
425
+ "learning_rate": 0.0004004524886877828,
426
+ "loss": 0.1821,
427
+ "step": 540
428
+ },
429
+ {
430
+ "epoch": 1.1904761904761905,
431
+ "grad_norm": 0.5546875,
432
+ "learning_rate": 0.00039819004524886876,
433
+ "loss": 0.1811,
434
+ "step": 550
435
+ },
436
+ {
437
+ "epoch": 1.2121212121212122,
438
+ "grad_norm": 0.373046875,
439
+ "learning_rate": 0.00039592760180995475,
440
+ "loss": 0.1717,
441
+ "step": 560
442
+ },
443
+ {
444
+ "epoch": 1.2337662337662338,
445
+ "grad_norm": 0.58984375,
446
+ "learning_rate": 0.00039366515837104075,
447
+ "loss": 0.1725,
448
+ "step": 570
449
+ },
450
+ {
451
+ "epoch": 1.2554112554112553,
452
+ "grad_norm": 0.298828125,
453
+ "learning_rate": 0.0003914027149321267,
454
+ "loss": 0.1713,
455
+ "step": 580
456
+ },
457
+ {
458
+ "epoch": 1.277056277056277,
459
+ "grad_norm": 0.58203125,
460
+ "learning_rate": 0.0003891402714932127,
461
+ "loss": 0.1655,
462
+ "step": 590
463
+ },
464
+ {
465
+ "epoch": 1.2987012987012987,
466
+ "grad_norm": 0.8046875,
467
+ "learning_rate": 0.0003868778280542987,
468
+ "loss": 0.1835,
469
+ "step": 600
470
+ },
471
+ {
472
+ "epoch": 1.2987012987012987,
473
+ "eval_loss": 0.12451652437448502,
474
+ "eval_runtime": 20.7534,
475
+ "eval_samples_per_second": 24.092,
476
+ "eval_steps_per_second": 0.771,
477
+ "step": 600
478
+ },
479
+ {
480
+ "epoch": 1.3203463203463204,
481
+ "grad_norm": 0.421875,
482
+ "learning_rate": 0.00038461538461538467,
483
+ "loss": 0.1626,
484
+ "step": 610
485
+ },
486
+ {
487
+ "epoch": 1.341991341991342,
488
+ "grad_norm": 0.439453125,
489
+ "learning_rate": 0.00038235294117647055,
490
+ "loss": 0.1713,
491
+ "step": 620
492
+ },
493
+ {
494
+ "epoch": 1.3636363636363638,
495
+ "grad_norm": 0.380859375,
496
+ "learning_rate": 0.00038009049773755655,
497
+ "loss": 0.161,
498
+ "step": 630
499
+ },
500
+ {
501
+ "epoch": 1.3852813852813852,
502
+ "grad_norm": 0.478515625,
503
+ "learning_rate": 0.00037782805429864254,
504
+ "loss": 0.1823,
505
+ "step": 640
506
+ },
507
+ {
508
+ "epoch": 1.406926406926407,
509
+ "grad_norm": 0.404296875,
510
+ "learning_rate": 0.00037556561085972854,
511
+ "loss": 0.1822,
512
+ "step": 650
513
+ },
514
+ {
515
+ "epoch": 1.4285714285714286,
516
+ "grad_norm": 0.4296875,
517
+ "learning_rate": 0.0003733031674208145,
518
+ "loss": 0.1675,
519
+ "step": 660
520
+ },
521
+ {
522
+ "epoch": 1.4502164502164503,
523
+ "grad_norm": 0.376953125,
524
+ "learning_rate": 0.00037104072398190047,
525
+ "loss": 0.1736,
526
+ "step": 670
527
+ },
528
+ {
529
+ "epoch": 1.4718614718614718,
530
+ "grad_norm": 0.412109375,
531
+ "learning_rate": 0.00036877828054298646,
532
+ "loss": 0.1614,
533
+ "step": 680
534
+ },
535
+ {
536
+ "epoch": 1.4935064935064934,
537
+ "grad_norm": 0.373046875,
538
+ "learning_rate": 0.0003665158371040724,
539
+ "loss": 0.1795,
540
+ "step": 690
541
+ },
542
+ {
543
+ "epoch": 1.5151515151515151,
544
+ "grad_norm": 0.345703125,
545
+ "learning_rate": 0.00036425339366515834,
546
+ "loss": 0.183,
547
+ "step": 700
548
+ },
549
+ {
550
+ "epoch": 1.5151515151515151,
551
+ "eval_loss": 0.10722990334033966,
552
+ "eval_runtime": 19.3953,
553
+ "eval_samples_per_second": 25.779,
554
+ "eval_steps_per_second": 0.825,
555
+ "step": 700
556
+ },
557
+ {
558
+ "epoch": 1.5367965367965368,
559
+ "grad_norm": 0.380859375,
560
+ "learning_rate": 0.00036199095022624434,
561
+ "loss": 0.1647,
562
+ "step": 710
563
+ },
564
+ {
565
+ "epoch": 1.5584415584415585,
566
+ "grad_norm": 0.369140625,
567
+ "learning_rate": 0.00035972850678733033,
568
+ "loss": 0.1649,
569
+ "step": 720
570
+ },
571
+ {
572
+ "epoch": 1.5800865800865802,
573
+ "grad_norm": 0.283203125,
574
+ "learning_rate": 0.0003574660633484163,
575
+ "loss": 0.1676,
576
+ "step": 730
577
+ },
578
+ {
579
+ "epoch": 1.601731601731602,
580
+ "grad_norm": 0.41796875,
581
+ "learning_rate": 0.00035520361990950226,
582
+ "loss": 0.1625,
583
+ "step": 740
584
+ },
585
+ {
586
+ "epoch": 1.6233766233766234,
587
+ "grad_norm": 0.365234375,
588
+ "learning_rate": 0.00035294117647058826,
589
+ "loss": 0.1714,
590
+ "step": 750
591
+ },
592
+ {
593
+ "epoch": 1.645021645021645,
594
+ "grad_norm": 0.31640625,
595
+ "learning_rate": 0.0003506787330316742,
596
+ "loss": 0.1612,
597
+ "step": 760
598
+ },
599
+ {
600
+ "epoch": 1.6666666666666665,
601
+ "grad_norm": 0.4921875,
602
+ "learning_rate": 0.0003484162895927602,
603
+ "loss": 0.1623,
604
+ "step": 770
605
+ },
606
+ {
607
+ "epoch": 1.6883116883116882,
608
+ "grad_norm": 0.380859375,
609
+ "learning_rate": 0.00034615384615384613,
610
+ "loss": 0.1508,
611
+ "step": 780
612
+ },
613
+ {
614
+ "epoch": 1.70995670995671,
615
+ "grad_norm": 0.34375,
616
+ "learning_rate": 0.0003438914027149321,
617
+ "loss": 0.1632,
618
+ "step": 790
619
+ },
620
+ {
621
+ "epoch": 1.7316017316017316,
622
+ "grad_norm": 0.34765625,
623
+ "learning_rate": 0.0003416289592760181,
624
+ "loss": 0.1682,
625
+ "step": 800
626
+ },
627
+ {
628
+ "epoch": 1.7316017316017316,
629
+ "eval_loss": 0.10919010639190674,
630
+ "eval_runtime": 27.8108,
631
+ "eval_samples_per_second": 17.979,
632
+ "eval_steps_per_second": 0.575,
633
+ "step": 800
634
+ },
635
+ {
636
+ "epoch": 1.7532467532467533,
637
+ "grad_norm": 0.310546875,
638
+ "learning_rate": 0.0003393665158371041,
639
+ "loss": 0.1514,
640
+ "step": 810
641
+ },
642
+ {
643
+ "epoch": 1.774891774891775,
644
+ "grad_norm": 0.359375,
645
+ "learning_rate": 0.00033710407239819005,
646
+ "loss": 0.1536,
647
+ "step": 820
648
+ },
649
+ {
650
+ "epoch": 1.7965367965367967,
651
+ "grad_norm": 0.248046875,
652
+ "learning_rate": 0.000334841628959276,
653
+ "loss": 0.1723,
654
+ "step": 830
655
+ },
656
+ {
657
+ "epoch": 1.8181818181818183,
658
+ "grad_norm": 0.484375,
659
+ "learning_rate": 0.000332579185520362,
660
+ "loss": 0.168,
661
+ "step": 840
662
+ },
663
+ {
664
+ "epoch": 1.8398268398268398,
665
+ "grad_norm": 0.35546875,
666
+ "learning_rate": 0.000330316742081448,
667
+ "loss": 0.1515,
668
+ "step": 850
669
+ },
670
+ {
671
+ "epoch": 1.8614718614718615,
672
+ "grad_norm": 0.298828125,
673
+ "learning_rate": 0.0003280542986425339,
674
+ "loss": 0.1694,
675
+ "step": 860
676
+ },
677
+ {
678
+ "epoch": 1.883116883116883,
679
+ "grad_norm": 0.3671875,
680
+ "learning_rate": 0.0003257918552036199,
681
+ "loss": 0.1679,
682
+ "step": 870
683
+ },
684
+ {
685
+ "epoch": 1.9047619047619047,
686
+ "grad_norm": 0.357421875,
687
+ "learning_rate": 0.0003235294117647059,
688
+ "loss": 0.1632,
689
+ "step": 880
690
+ },
691
+ {
692
+ "epoch": 1.9264069264069263,
693
+ "grad_norm": 0.3828125,
694
+ "learning_rate": 0.0003212669683257919,
695
+ "loss": 0.1619,
696
+ "step": 890
697
+ },
698
+ {
699
+ "epoch": 1.948051948051948,
700
+ "grad_norm": 0.380859375,
701
+ "learning_rate": 0.0003190045248868778,
702
+ "loss": 0.1632,
703
+ "step": 900
704
+ },
705
+ {
706
+ "epoch": 1.948051948051948,
707
+ "eval_loss": 0.11044134944677353,
708
+ "eval_runtime": 18.793,
709
+ "eval_samples_per_second": 26.606,
710
+ "eval_steps_per_second": 0.851,
711
+ "step": 900
712
+ },
713
+ {
714
+ "epoch": 1.9696969696969697,
715
+ "grad_norm": 0.306640625,
716
+ "learning_rate": 0.0003167420814479638,
717
+ "loss": 0.1625,
718
+ "step": 910
719
+ },
720
+ {
721
+ "epoch": 1.9913419913419914,
722
+ "grad_norm": 0.384765625,
723
+ "learning_rate": 0.0003144796380090498,
724
+ "loss": 0.1616,
725
+ "step": 920
726
+ },
727
+ {
728
+ "epoch": 2.012987012987013,
729
+ "grad_norm": 0.318359375,
730
+ "learning_rate": 0.00031221719457013577,
731
+ "loss": 0.1433,
732
+ "step": 930
733
+ },
734
+ {
735
+ "epoch": 2.034632034632035,
736
+ "grad_norm": 0.310546875,
737
+ "learning_rate": 0.0003099547511312217,
738
+ "loss": 0.1483,
739
+ "step": 940
740
+ },
741
+ {
742
+ "epoch": 2.0562770562770565,
743
+ "grad_norm": 0.322265625,
744
+ "learning_rate": 0.0003076923076923077,
745
+ "loss": 0.1398,
746
+ "step": 950
747
+ },
748
+ {
749
+ "epoch": 2.0779220779220777,
750
+ "grad_norm": 0.83203125,
751
+ "learning_rate": 0.0003054298642533937,
752
+ "loss": 0.1488,
753
+ "step": 960
754
+ },
755
+ {
756
+ "epoch": 2.0995670995670994,
757
+ "grad_norm": 0.279296875,
758
+ "learning_rate": 0.00030316742081447964,
759
+ "loss": 0.1468,
760
+ "step": 970
761
+ },
762
+ {
763
+ "epoch": 2.121212121212121,
764
+ "grad_norm": 0.337890625,
765
+ "learning_rate": 0.0003009049773755656,
766
+ "loss": 0.1503,
767
+ "step": 980
768
+ },
769
+ {
770
+ "epoch": 2.142857142857143,
771
+ "grad_norm": 0.2373046875,
772
+ "learning_rate": 0.00029864253393665157,
773
+ "loss": 0.1326,
774
+ "step": 990
775
+ },
776
+ {
777
+ "epoch": 2.1645021645021645,
778
+ "grad_norm": 0.341796875,
779
+ "learning_rate": 0.00029638009049773756,
780
+ "loss": 0.1335,
781
+ "step": 1000
782
+ },
783
+ {
784
+ "epoch": 2.1645021645021645,
785
+ "eval_loss": 0.11199549585580826,
786
+ "eval_runtime": 20.4528,
787
+ "eval_samples_per_second": 24.447,
788
+ "eval_steps_per_second": 0.782,
789
+ "step": 1000
790
+ },
791
+ {
792
+ "epoch": 2.186147186147186,
793
+ "grad_norm": 0.369140625,
794
+ "learning_rate": 0.00029411764705882356,
795
+ "loss": 0.1375,
796
+ "step": 1010
797
+ },
798
+ {
799
+ "epoch": 2.207792207792208,
800
+ "grad_norm": 0.271484375,
801
+ "learning_rate": 0.00029185520361990955,
802
+ "loss": 0.1334,
803
+ "step": 1020
804
+ },
805
+ {
806
+ "epoch": 2.2294372294372296,
807
+ "grad_norm": 0.294921875,
808
+ "learning_rate": 0.0002895927601809955,
809
+ "loss": 0.1332,
810
+ "step": 1030
811
+ },
812
+ {
813
+ "epoch": 2.2510822510822512,
814
+ "grad_norm": 0.392578125,
815
+ "learning_rate": 0.00028733031674208143,
816
+ "loss": 0.1327,
817
+ "step": 1040
818
+ },
819
+ {
820
+ "epoch": 2.2727272727272725,
821
+ "grad_norm": 0.271484375,
822
+ "learning_rate": 0.0002850678733031674,
823
+ "loss": 0.141,
824
+ "step": 1050
825
+ },
826
+ {
827
+ "epoch": 2.2943722943722946,
828
+ "grad_norm": 0.357421875,
829
+ "learning_rate": 0.0002828054298642534,
830
+ "loss": 0.1432,
831
+ "step": 1060
832
+ },
833
+ {
834
+ "epoch": 2.316017316017316,
835
+ "grad_norm": 0.2890625,
836
+ "learning_rate": 0.00028054298642533936,
837
+ "loss": 0.1447,
838
+ "step": 1070
839
+ },
840
+ {
841
+ "epoch": 2.3376623376623376,
842
+ "grad_norm": 0.2890625,
843
+ "learning_rate": 0.00027828054298642535,
844
+ "loss": 0.1376,
845
+ "step": 1080
846
+ },
847
+ {
848
+ "epoch": 2.3593073593073592,
849
+ "grad_norm": 0.29296875,
850
+ "learning_rate": 0.00027601809954751135,
851
+ "loss": 0.1287,
852
+ "step": 1090
853
+ },
854
+ {
855
+ "epoch": 2.380952380952381,
856
+ "grad_norm": 0.333984375,
857
+ "learning_rate": 0.00027375565610859734,
858
+ "loss": 0.1399,
859
+ "step": 1100
860
+ },
861
+ {
862
+ "epoch": 2.380952380952381,
863
+ "eval_loss": 0.09553591907024384,
864
+ "eval_runtime": 20.0139,
865
+ "eval_samples_per_second": 24.983,
866
+ "eval_steps_per_second": 0.799,
867
+ "step": 1100
868
+ },
869
+ {
870
+ "epoch": 2.4025974025974026,
871
+ "grad_norm": 0.318359375,
872
+ "learning_rate": 0.0002714932126696832,
873
+ "loss": 0.1417,
874
+ "step": 1110
875
+ },
876
+ {
877
+ "epoch": 2.4242424242424243,
878
+ "grad_norm": 0.294921875,
879
+ "learning_rate": 0.0002692307692307692,
880
+ "loss": 0.1428,
881
+ "step": 1120
882
+ },
883
+ {
884
+ "epoch": 2.445887445887446,
885
+ "grad_norm": 0.30078125,
886
+ "learning_rate": 0.0002669683257918552,
887
+ "loss": 0.1367,
888
+ "step": 1130
889
+ },
890
+ {
891
+ "epoch": 2.4675324675324677,
892
+ "grad_norm": 0.271484375,
893
+ "learning_rate": 0.0002647058823529412,
894
+ "loss": 0.1383,
895
+ "step": 1140
896
+ },
897
+ {
898
+ "epoch": 2.4891774891774894,
899
+ "grad_norm": 0.2578125,
900
+ "learning_rate": 0.00026244343891402715,
901
+ "loss": 0.1438,
902
+ "step": 1150
903
+ },
904
+ {
905
+ "epoch": 2.5108225108225106,
906
+ "grad_norm": 0.3515625,
907
+ "learning_rate": 0.00026018099547511314,
908
+ "loss": 0.1394,
909
+ "step": 1160
910
+ },
911
+ {
912
+ "epoch": 2.5324675324675323,
913
+ "grad_norm": 0.291015625,
914
+ "learning_rate": 0.00025791855203619913,
915
+ "loss": 0.1358,
916
+ "step": 1170
917
+ },
918
+ {
919
+ "epoch": 2.554112554112554,
920
+ "grad_norm": 0.326171875,
921
+ "learning_rate": 0.0002556561085972851,
922
+ "loss": 0.1266,
923
+ "step": 1180
924
+ },
925
+ {
926
+ "epoch": 2.5757575757575757,
927
+ "grad_norm": 0.3828125,
928
+ "learning_rate": 0.000253393665158371,
929
+ "loss": 0.1353,
930
+ "step": 1190
931
+ },
932
+ {
933
+ "epoch": 2.5974025974025974,
934
+ "grad_norm": 0.30078125,
935
+ "learning_rate": 0.000251131221719457,
936
+ "loss": 0.1483,
937
+ "step": 1200
938
+ },
939
+ {
940
+ "epoch": 2.5974025974025974,
941
+ "eval_loss": 0.10388709604740143,
942
+ "eval_runtime": 19.843,
943
+ "eval_samples_per_second": 25.198,
944
+ "eval_steps_per_second": 0.806,
945
+ "step": 1200
946
+ },
947
+ {
948
+ "epoch": 2.619047619047619,
949
+ "grad_norm": 0.2490234375,
950
+ "learning_rate": 0.000248868778280543,
951
+ "loss": 0.1364,
952
+ "step": 1210
953
+ },
954
+ {
955
+ "epoch": 2.6406926406926408,
956
+ "grad_norm": 0.2080078125,
957
+ "learning_rate": 0.000246606334841629,
958
+ "loss": 0.1285,
959
+ "step": 1220
960
+ },
961
+ {
962
+ "epoch": 2.6623376623376624,
963
+ "grad_norm": 0.251953125,
964
+ "learning_rate": 0.00024434389140271494,
965
+ "loss": 0.1264,
966
+ "step": 1230
967
+ },
968
+ {
969
+ "epoch": 2.683982683982684,
970
+ "grad_norm": 0.287109375,
971
+ "learning_rate": 0.0002420814479638009,
972
+ "loss": 0.1331,
973
+ "step": 1240
974
+ },
975
+ {
976
+ "epoch": 2.7056277056277054,
977
+ "grad_norm": 0.396484375,
978
+ "learning_rate": 0.0002398190045248869,
979
+ "loss": 0.15,
980
+ "step": 1250
981
+ },
982
+ {
983
+ "epoch": 2.7272727272727275,
984
+ "grad_norm": 0.275390625,
985
+ "learning_rate": 0.00023755656108597284,
986
+ "loss": 0.1367,
987
+ "step": 1260
988
+ },
989
+ {
990
+ "epoch": 2.7489177489177488,
991
+ "grad_norm": 0.275390625,
992
+ "learning_rate": 0.00023529411764705883,
993
+ "loss": 0.13,
994
+ "step": 1270
995
+ },
996
+ {
997
+ "epoch": 2.7705627705627704,
998
+ "grad_norm": 0.33203125,
999
+ "learning_rate": 0.0002330316742081448,
1000
+ "loss": 0.1324,
1001
+ "step": 1280
1002
+ },
1003
+ {
1004
+ "epoch": 2.792207792207792,
1005
+ "grad_norm": 0.302734375,
1006
+ "learning_rate": 0.0002307692307692308,
1007
+ "loss": 0.1336,
1008
+ "step": 1290
1009
+ },
1010
+ {
1011
+ "epoch": 2.813852813852814,
1012
+ "grad_norm": 0.23828125,
1013
+ "learning_rate": 0.00022850678733031673,
1014
+ "loss": 0.1314,
1015
+ "step": 1300
1016
+ },
1017
+ {
1018
+ "epoch": 2.813852813852814,
1019
+ "eval_loss": 0.10149528831243515,
1020
+ "eval_runtime": 19.1293,
1021
+ "eval_samples_per_second": 26.138,
1022
+ "eval_steps_per_second": 0.836,
1023
+ "step": 1300
1024
+ },
1025
+ {
1026
+ "epoch": 2.8354978354978355,
1027
+ "grad_norm": 0.306640625,
1028
+ "learning_rate": 0.00022624434389140272,
1029
+ "loss": 0.1309,
1030
+ "step": 1310
1031
+ },
1032
+ {
1033
+ "epoch": 2.857142857142857,
1034
+ "grad_norm": 0.2734375,
1035
+ "learning_rate": 0.0002239819004524887,
1036
+ "loss": 0.1353,
1037
+ "step": 1320
1038
+ },
1039
+ {
1040
+ "epoch": 2.878787878787879,
1041
+ "grad_norm": 0.462890625,
1042
+ "learning_rate": 0.00022171945701357466,
1043
+ "loss": 0.1446,
1044
+ "step": 1330
1045
+ },
1046
+ {
1047
+ "epoch": 2.9004329004329006,
1048
+ "grad_norm": 0.26953125,
1049
+ "learning_rate": 0.00021945701357466062,
1050
+ "loss": 0.1333,
1051
+ "step": 1340
1052
+ },
1053
+ {
1054
+ "epoch": 2.9220779220779223,
1055
+ "grad_norm": 0.2080078125,
1056
+ "learning_rate": 0.00021719457013574662,
1057
+ "loss": 0.1383,
1058
+ "step": 1350
1059
+ },
1060
+ {
1061
+ "epoch": 2.9437229437229435,
1062
+ "grad_norm": 0.267578125,
1063
+ "learning_rate": 0.00021493212669683259,
1064
+ "loss": 0.1496,
1065
+ "step": 1360
1066
+ },
1067
+ {
1068
+ "epoch": 2.965367965367965,
1069
+ "grad_norm": 0.283203125,
1070
+ "learning_rate": 0.00021266968325791855,
1071
+ "loss": 0.1399,
1072
+ "step": 1370
1073
+ },
1074
+ {
1075
+ "epoch": 2.987012987012987,
1076
+ "grad_norm": 0.380859375,
1077
+ "learning_rate": 0.00021040723981900452,
1078
+ "loss": 0.139,
1079
+ "step": 1380
1080
+ },
1081
+ {
1082
+ "epoch": 3.0086580086580086,
1083
+ "grad_norm": 0.201171875,
1084
+ "learning_rate": 0.0002081447963800905,
1085
+ "loss": 0.127,
1086
+ "step": 1390
1087
+ },
1088
+ {
1089
+ "epoch": 3.0303030303030303,
1090
+ "grad_norm": 0.2578125,
1091
+ "learning_rate": 0.00020588235294117645,
1092
+ "loss": 0.114,
1093
+ "step": 1400
1094
+ },
1095
+ {
1096
+ "epoch": 3.0303030303030303,
1097
+ "eval_loss": 0.09961362928152084,
1098
+ "eval_runtime": 20.1151,
1099
+ "eval_samples_per_second": 24.857,
1100
+ "eval_steps_per_second": 0.795,
1101
+ "step": 1400
1102
+ },
1103
+ {
1104
+ "epoch": 3.051948051948052,
1105
+ "grad_norm": 0.298828125,
1106
+ "learning_rate": 0.00020361990950226245,
1107
+ "loss": 0.1222,
1108
+ "step": 1410
1109
+ },
1110
+ {
1111
+ "epoch": 3.0735930735930737,
1112
+ "grad_norm": 0.2490234375,
1113
+ "learning_rate": 0.0002013574660633484,
1114
+ "loss": 0.1174,
1115
+ "step": 1420
1116
+ },
1117
+ {
1118
+ "epoch": 3.0952380952380953,
1119
+ "grad_norm": 0.2275390625,
1120
+ "learning_rate": 0.00019909502262443438,
1121
+ "loss": 0.121,
1122
+ "step": 1430
1123
+ },
1124
+ {
1125
+ "epoch": 3.116883116883117,
1126
+ "grad_norm": 0.33203125,
1127
+ "learning_rate": 0.00019683257918552037,
1128
+ "loss": 0.1179,
1129
+ "step": 1440
1130
+ },
1131
+ {
1132
+ "epoch": 3.1385281385281387,
1133
+ "grad_norm": 0.2373046875,
1134
+ "learning_rate": 0.00019457013574660634,
1135
+ "loss": 0.1163,
1136
+ "step": 1450
1137
+ },
1138
+ {
1139
+ "epoch": 3.16017316017316,
1140
+ "grad_norm": 0.232421875,
1141
+ "learning_rate": 0.00019230769230769233,
1142
+ "loss": 0.1173,
1143
+ "step": 1460
1144
+ },
1145
+ {
1146
+ "epoch": 3.1818181818181817,
1147
+ "grad_norm": 0.2734375,
1148
+ "learning_rate": 0.00019004524886877827,
1149
+ "loss": 0.1193,
1150
+ "step": 1470
1151
+ },
1152
+ {
1153
+ "epoch": 3.2034632034632033,
1154
+ "grad_norm": 0.458984375,
1155
+ "learning_rate": 0.00018778280542986427,
1156
+ "loss": 0.1208,
1157
+ "step": 1480
1158
+ },
1159
+ {
1160
+ "epoch": 3.225108225108225,
1161
+ "grad_norm": 0.279296875,
1162
+ "learning_rate": 0.00018552036199095024,
1163
+ "loss": 0.1229,
1164
+ "step": 1490
1165
+ },
1166
+ {
1167
+ "epoch": 3.2467532467532467,
1168
+ "grad_norm": 0.283203125,
1169
+ "learning_rate": 0.0001832579185520362,
1170
+ "loss": 0.1202,
1171
+ "step": 1500
1172
+ },
1173
+ {
1174
+ "epoch": 3.2467532467532467,
1175
+ "eval_loss": 0.10085491091012955,
1176
+ "eval_runtime": 21.5392,
1177
+ "eval_samples_per_second": 23.214,
1178
+ "eval_steps_per_second": 0.743,
1179
+ "step": 1500
1180
+ },
1181
+ {
1182
+ "epoch": 3.2683982683982684,
1183
+ "grad_norm": 0.1943359375,
1184
+ "learning_rate": 0.00018099547511312217,
1185
+ "loss": 0.119,
1186
+ "step": 1510
1187
+ },
1188
+ {
1189
+ "epoch": 3.29004329004329,
1190
+ "grad_norm": 0.45703125,
1191
+ "learning_rate": 0.00017873303167420816,
1192
+ "loss": 0.124,
1193
+ "step": 1520
1194
+ },
1195
+ {
1196
+ "epoch": 3.311688311688312,
1197
+ "grad_norm": 0.296875,
1198
+ "learning_rate": 0.00017647058823529413,
1199
+ "loss": 0.1214,
1200
+ "step": 1530
1201
+ },
1202
+ {
1203
+ "epoch": 3.3333333333333335,
1204
+ "grad_norm": 0.326171875,
1205
+ "learning_rate": 0.0001742081447963801,
1206
+ "loss": 0.1236,
1207
+ "step": 1540
1208
+ },
1209
+ {
1210
+ "epoch": 3.354978354978355,
1211
+ "grad_norm": 0.369140625,
1212
+ "learning_rate": 0.00017194570135746606,
1213
+ "loss": 0.1175,
1214
+ "step": 1550
1215
+ },
1216
+ {
1217
+ "epoch": 3.3766233766233764,
1218
+ "grad_norm": 0.2236328125,
1219
+ "learning_rate": 0.00016968325791855206,
1220
+ "loss": 0.1163,
1221
+ "step": 1560
1222
+ },
1223
+ {
1224
+ "epoch": 3.398268398268398,
1225
+ "grad_norm": 0.361328125,
1226
+ "learning_rate": 0.000167420814479638,
1227
+ "loss": 0.1114,
1228
+ "step": 1570
1229
+ },
1230
+ {
1231
+ "epoch": 3.41991341991342,
1232
+ "grad_norm": 0.1845703125,
1233
+ "learning_rate": 0.000165158371040724,
1234
+ "loss": 0.1164,
1235
+ "step": 1580
1236
+ },
1237
+ {
1238
+ "epoch": 3.4415584415584415,
1239
+ "grad_norm": 0.2060546875,
1240
+ "learning_rate": 0.00016289592760180996,
1241
+ "loss": 0.1128,
1242
+ "step": 1590
1243
+ },
1244
+ {
1245
+ "epoch": 3.463203463203463,
1246
+ "grad_norm": 0.3125,
1247
+ "learning_rate": 0.00016063348416289595,
1248
+ "loss": 0.1163,
1249
+ "step": 1600
1250
+ },
1251
+ {
1252
+ "epoch": 3.463203463203463,
1253
+ "eval_loss": 0.10191706568002701,
1254
+ "eval_runtime": 23.6847,
1255
+ "eval_samples_per_second": 21.111,
1256
+ "eval_steps_per_second": 0.676,
1257
+ "step": 1600
1258
+ },
1259
+ {
1260
+ "epoch": 3.484848484848485,
1261
+ "grad_norm": 0.287109375,
1262
+ "learning_rate": 0.0001583710407239819,
1263
+ "loss": 0.1171,
1264
+ "step": 1610
1265
+ },
1266
+ {
1267
+ "epoch": 3.5064935064935066,
1268
+ "grad_norm": 0.310546875,
1269
+ "learning_rate": 0.00015610859728506788,
1270
+ "loss": 0.1159,
1271
+ "step": 1620
1272
+ },
1273
+ {
1274
+ "epoch": 3.5281385281385282,
1275
+ "grad_norm": 0.2451171875,
1276
+ "learning_rate": 0.00015384615384615385,
1277
+ "loss": 0.12,
1278
+ "step": 1630
1279
+ },
1280
+ {
1281
+ "epoch": 3.54978354978355,
1282
+ "grad_norm": 0.208984375,
1283
+ "learning_rate": 0.00015158371040723982,
1284
+ "loss": 0.1048,
1285
+ "step": 1640
1286
+ },
1287
+ {
1288
+ "epoch": 3.571428571428571,
1289
+ "grad_norm": 0.1591796875,
1290
+ "learning_rate": 0.00014932126696832579,
1291
+ "loss": 0.1061,
1292
+ "step": 1650
1293
+ },
1294
+ {
1295
+ "epoch": 3.5930735930735933,
1296
+ "grad_norm": 0.416015625,
1297
+ "learning_rate": 0.00014705882352941178,
1298
+ "loss": 0.1283,
1299
+ "step": 1660
1300
+ },
1301
+ {
1302
+ "epoch": 3.6147186147186146,
1303
+ "grad_norm": 0.248046875,
1304
+ "learning_rate": 0.00014479638009049775,
1305
+ "loss": 0.1194,
1306
+ "step": 1670
1307
+ },
1308
+ {
1309
+ "epoch": 3.6363636363636362,
1310
+ "grad_norm": 0.228515625,
1311
+ "learning_rate": 0.0001425339366515837,
1312
+ "loss": 0.1132,
1313
+ "step": 1680
1314
+ },
1315
+ {
1316
+ "epoch": 3.658008658008658,
1317
+ "grad_norm": 0.361328125,
1318
+ "learning_rate": 0.00014027149321266968,
1319
+ "loss": 0.1226,
1320
+ "step": 1690
1321
+ },
1322
+ {
1323
+ "epoch": 3.6796536796536796,
1324
+ "grad_norm": 0.32421875,
1325
+ "learning_rate": 0.00013800904977375567,
1326
+ "loss": 0.1245,
1327
+ "step": 1700
1328
+ },
1329
+ {
1330
+ "epoch": 3.6796536796536796,
1331
+ "eval_loss": 0.09824839979410172,
1332
+ "eval_runtime": 19.2671,
1333
+ "eval_samples_per_second": 25.951,
1334
+ "eval_steps_per_second": 0.83,
1335
+ "step": 1700
1336
+ },
1337
+ {
1338
+ "epoch": 3.7012987012987013,
1339
+ "grad_norm": 0.365234375,
1340
+ "learning_rate": 0.0001357466063348416,
1341
+ "loss": 0.1219,
1342
+ "step": 1710
1343
+ },
1344
+ {
1345
+ "epoch": 3.722943722943723,
1346
+ "grad_norm": 0.365234375,
1347
+ "learning_rate": 0.0001334841628959276,
1348
+ "loss": 0.1184,
1349
+ "step": 1720
1350
+ },
1351
+ {
1352
+ "epoch": 3.7445887445887447,
1353
+ "grad_norm": 0.2451171875,
1354
+ "learning_rate": 0.00013122171945701357,
1355
+ "loss": 0.1157,
1356
+ "step": 1730
1357
+ },
1358
+ {
1359
+ "epoch": 3.7662337662337664,
1360
+ "grad_norm": 0.263671875,
1361
+ "learning_rate": 0.00012895927601809957,
1362
+ "loss": 0.1075,
1363
+ "step": 1740
1364
+ },
1365
+ {
1366
+ "epoch": 3.787878787878788,
1367
+ "grad_norm": 0.265625,
1368
+ "learning_rate": 0.0001266968325791855,
1369
+ "loss": 0.1102,
1370
+ "step": 1750
1371
+ },
1372
+ {
1373
+ "epoch": 3.8095238095238093,
1374
+ "grad_norm": 0.28125,
1375
+ "learning_rate": 0.0001244343891402715,
1376
+ "loss": 0.1184,
1377
+ "step": 1760
1378
+ },
1379
+ {
1380
+ "epoch": 3.8311688311688314,
1381
+ "grad_norm": 0.27734375,
1382
+ "learning_rate": 0.00012217194570135747,
1383
+ "loss": 0.1081,
1384
+ "step": 1770
1385
+ },
1386
+ {
1387
+ "epoch": 3.8528138528138527,
1388
+ "grad_norm": 0.365234375,
1389
+ "learning_rate": 0.00011990950226244345,
1390
+ "loss": 0.1222,
1391
+ "step": 1780
1392
+ },
1393
+ {
1394
+ "epoch": 3.8744588744588744,
1395
+ "grad_norm": 0.328125,
1396
+ "learning_rate": 0.00011764705882352942,
1397
+ "loss": 0.1224,
1398
+ "step": 1790
1399
+ },
1400
+ {
1401
+ "epoch": 3.896103896103896,
1402
+ "grad_norm": 0.228515625,
1403
+ "learning_rate": 0.0001153846153846154,
1404
+ "loss": 0.1032,
1405
+ "step": 1800
1406
+ },
1407
+ {
1408
+ "epoch": 3.896103896103896,
1409
+ "eval_loss": 0.09573096036911011,
1410
+ "eval_runtime": 23.7902,
1411
+ "eval_samples_per_second": 21.017,
1412
+ "eval_steps_per_second": 0.673,
1413
+ "step": 1800
1414
+ },
1415
+ {
1416
+ "epoch": 3.9177489177489178,
1417
+ "grad_norm": 0.33984375,
1418
+ "learning_rate": 0.00011312217194570136,
1419
+ "loss": 0.1182,
1420
+ "step": 1810
1421
+ },
1422
+ {
1423
+ "epoch": 3.9393939393939394,
1424
+ "grad_norm": 0.3828125,
1425
+ "learning_rate": 0.00011085972850678733,
1426
+ "loss": 0.1191,
1427
+ "step": 1820
1428
+ },
1429
+ {
1430
+ "epoch": 3.961038961038961,
1431
+ "grad_norm": 0.3359375,
1432
+ "learning_rate": 0.00010859728506787331,
1433
+ "loss": 0.1125,
1434
+ "step": 1830
1435
+ },
1436
+ {
1437
+ "epoch": 3.982683982683983,
1438
+ "grad_norm": 0.2138671875,
1439
+ "learning_rate": 0.00010633484162895928,
1440
+ "loss": 0.1188,
1441
+ "step": 1840
1442
+ },
1443
+ {
1444
+ "epoch": 4.004329004329004,
1445
+ "grad_norm": 0.30078125,
1446
+ "learning_rate": 0.00010407239819004526,
1447
+ "loss": 0.1203,
1448
+ "step": 1850
1449
+ },
1450
+ {
1451
+ "epoch": 4.025974025974026,
1452
+ "grad_norm": 0.232421875,
1453
+ "learning_rate": 0.00010180995475113122,
1454
+ "loss": 0.1077,
1455
+ "step": 1860
1456
+ },
1457
+ {
1458
+ "epoch": 4.0476190476190474,
1459
+ "grad_norm": 0.2080078125,
1460
+ "learning_rate": 9.954751131221719e-05,
1461
+ "loss": 0.1065,
1462
+ "step": 1870
1463
+ },
1464
+ {
1465
+ "epoch": 4.06926406926407,
1466
+ "grad_norm": 0.27734375,
1467
+ "learning_rate": 9.728506787330317e-05,
1468
+ "loss": 0.1112,
1469
+ "step": 1880
1470
+ },
1471
+ {
1472
+ "epoch": 4.090909090909091,
1473
+ "grad_norm": 0.2333984375,
1474
+ "learning_rate": 9.502262443438914e-05,
1475
+ "loss": 0.1006,
1476
+ "step": 1890
1477
+ },
1478
+ {
1479
+ "epoch": 4.112554112554113,
1480
+ "grad_norm": 0.205078125,
1481
+ "learning_rate": 9.276018099547512e-05,
1482
+ "loss": 0.1043,
1483
+ "step": 1900
1484
+ },
1485
+ {
1486
+ "epoch": 4.112554112554113,
1487
+ "eval_loss": 0.09408007562160492,
1488
+ "eval_runtime": 19.9413,
1489
+ "eval_samples_per_second": 25.074,
1490
+ "eval_steps_per_second": 0.802,
1491
+ "step": 1900
1492
+ },
1493
+ {
1494
+ "epoch": 4.134199134199134,
1495
+ "grad_norm": 0.265625,
1496
+ "learning_rate": 9.049773755656108e-05,
1497
+ "loss": 0.1013,
1498
+ "step": 1910
1499
+ },
1500
+ {
1501
+ "epoch": 4.1558441558441555,
1502
+ "grad_norm": 0.2109375,
1503
+ "learning_rate": 8.823529411764706e-05,
1504
+ "loss": 0.1058,
1505
+ "step": 1920
1506
+ },
1507
+ {
1508
+ "epoch": 4.177489177489178,
1509
+ "grad_norm": 0.19140625,
1510
+ "learning_rate": 8.597285067873303e-05,
1511
+ "loss": 0.1069,
1512
+ "step": 1930
1513
+ },
1514
+ {
1515
+ "epoch": 4.199134199134199,
1516
+ "grad_norm": 0.267578125,
1517
+ "learning_rate": 8.3710407239819e-05,
1518
+ "loss": 0.1089,
1519
+ "step": 1940
1520
+ },
1521
+ {
1522
+ "epoch": 4.220779220779221,
1523
+ "grad_norm": 0.283203125,
1524
+ "learning_rate": 8.144796380090498e-05,
1525
+ "loss": 0.1026,
1526
+ "step": 1950
1527
+ },
1528
+ {
1529
+ "epoch": 4.242424242424242,
1530
+ "grad_norm": 0.357421875,
1531
+ "learning_rate": 7.918552036199095e-05,
1532
+ "loss": 0.1043,
1533
+ "step": 1960
1534
+ },
1535
+ {
1536
+ "epoch": 4.264069264069264,
1537
+ "grad_norm": 0.21484375,
1538
+ "learning_rate": 7.692307692307693e-05,
1539
+ "loss": 0.1136,
1540
+ "step": 1970
1541
+ },
1542
+ {
1543
+ "epoch": 4.285714285714286,
1544
+ "grad_norm": 0.3203125,
1545
+ "learning_rate": 7.466063348416289e-05,
1546
+ "loss": 0.1045,
1547
+ "step": 1980
1548
+ },
1549
+ {
1550
+ "epoch": 4.307359307359308,
1551
+ "grad_norm": 0.244140625,
1552
+ "learning_rate": 7.239819004524887e-05,
1553
+ "loss": 0.1032,
1554
+ "step": 1990
1555
+ },
1556
+ {
1557
+ "epoch": 4.329004329004329,
1558
+ "grad_norm": 0.19140625,
1559
+ "learning_rate": 7.013574660633484e-05,
1560
+ "loss": 0.0977,
1561
+ "step": 2000
1562
+ },
1563
+ {
1564
+ "epoch": 4.329004329004329,
1565
+ "eval_loss": 0.09685727208852768,
1566
+ "eval_runtime": 20.4475,
1567
+ "eval_samples_per_second": 24.453,
1568
+ "eval_steps_per_second": 0.782,
1569
+ "step": 2000
1570
+ },
1571
+ {
1572
+ "epoch": 4.35064935064935,
1573
+ "grad_norm": 0.2333984375,
1574
+ "learning_rate": 6.78733031674208e-05,
1575
+ "loss": 0.1019,
1576
+ "step": 2010
1577
+ },
1578
+ {
1579
+ "epoch": 4.372294372294372,
1580
+ "grad_norm": 0.2294921875,
1581
+ "learning_rate": 6.561085972850679e-05,
1582
+ "loss": 0.1076,
1583
+ "step": 2020
1584
+ },
1585
+ {
1586
+ "epoch": 4.393939393939394,
1587
+ "grad_norm": 0.1650390625,
1588
+ "learning_rate": 6.334841628959275e-05,
1589
+ "loss": 0.0983,
1590
+ "step": 2030
1591
+ },
1592
+ {
1593
+ "epoch": 4.415584415584416,
1594
+ "grad_norm": 0.21484375,
1595
+ "learning_rate": 6.108597285067873e-05,
1596
+ "loss": 0.1023,
1597
+ "step": 2040
1598
+ },
1599
+ {
1600
+ "epoch": 4.437229437229437,
1601
+ "grad_norm": 0.26953125,
1602
+ "learning_rate": 5.882352941176471e-05,
1603
+ "loss": 0.0982,
1604
+ "step": 2050
1605
+ },
1606
+ {
1607
+ "epoch": 4.458874458874459,
1608
+ "grad_norm": 0.306640625,
1609
+ "learning_rate": 5.656108597285068e-05,
1610
+ "loss": 0.1071,
1611
+ "step": 2060
1612
+ },
1613
+ {
1614
+ "epoch": 4.48051948051948,
1615
+ "grad_norm": 0.2265625,
1616
+ "learning_rate": 5.4298642533936655e-05,
1617
+ "loss": 0.1095,
1618
+ "step": 2070
1619
+ },
1620
+ {
1621
+ "epoch": 4.5021645021645025,
1622
+ "grad_norm": 0.240234375,
1623
+ "learning_rate": 5.203619909502263e-05,
1624
+ "loss": 0.1105,
1625
+ "step": 2080
1626
+ },
1627
+ {
1628
+ "epoch": 4.523809523809524,
1629
+ "grad_norm": 0.2734375,
1630
+ "learning_rate": 4.9773755656108595e-05,
1631
+ "loss": 0.0961,
1632
+ "step": 2090
1633
+ },
1634
+ {
1635
+ "epoch": 4.545454545454545,
1636
+ "grad_norm": 0.2412109375,
1637
+ "learning_rate": 4.751131221719457e-05,
1638
+ "loss": 0.1016,
1639
+ "step": 2100
1640
+ },
1641
+ {
1642
+ "epoch": 4.545454545454545,
1643
+ "eval_loss": 0.09792981296777725,
1644
+ "eval_runtime": 20.8232,
1645
+ "eval_samples_per_second": 24.012,
1646
+ "eval_steps_per_second": 0.768,
1647
+ "step": 2100
1648
+ },
1649
+ {
1650
+ "epoch": 4.567099567099567,
1651
+ "grad_norm": 0.3125,
1652
+ "learning_rate": 4.524886877828054e-05,
1653
+ "loss": 0.0953,
1654
+ "step": 2110
1655
+ },
1656
+ {
1657
+ "epoch": 4.588744588744589,
1658
+ "grad_norm": 0.2421875,
1659
+ "learning_rate": 4.2986425339366516e-05,
1660
+ "loss": 0.105,
1661
+ "step": 2120
1662
+ },
1663
+ {
1664
+ "epoch": 4.6103896103896105,
1665
+ "grad_norm": 0.255859375,
1666
+ "learning_rate": 4.072398190045249e-05,
1667
+ "loss": 0.1063,
1668
+ "step": 2130
1669
+ },
1670
+ {
1671
+ "epoch": 4.632034632034632,
1672
+ "grad_norm": 0.33203125,
1673
+ "learning_rate": 3.846153846153846e-05,
1674
+ "loss": 0.0982,
1675
+ "step": 2140
1676
+ },
1677
+ {
1678
+ "epoch": 4.653679653679654,
1679
+ "grad_norm": 0.265625,
1680
+ "learning_rate": 3.6199095022624436e-05,
1681
+ "loss": 0.1068,
1682
+ "step": 2150
1683
+ },
1684
+ {
1685
+ "epoch": 4.675324675324675,
1686
+ "grad_norm": 0.2421875,
1687
+ "learning_rate": 3.39366515837104e-05,
1688
+ "loss": 0.1111,
1689
+ "step": 2160
1690
+ },
1691
+ {
1692
+ "epoch": 4.696969696969697,
1693
+ "grad_norm": 0.189453125,
1694
+ "learning_rate": 3.167420814479638e-05,
1695
+ "loss": 0.1084,
1696
+ "step": 2170
1697
+ },
1698
+ {
1699
+ "epoch": 4.7186147186147185,
1700
+ "grad_norm": 0.2734375,
1701
+ "learning_rate": 2.9411764705882354e-05,
1702
+ "loss": 0.103,
1703
+ "step": 2180
1704
+ },
1705
+ {
1706
+ "epoch": 4.740259740259741,
1707
+ "grad_norm": 0.337890625,
1708
+ "learning_rate": 2.7149321266968327e-05,
1709
+ "loss": 0.1089,
1710
+ "step": 2190
1711
+ },
1712
+ {
1713
+ "epoch": 4.761904761904762,
1714
+ "grad_norm": 0.3046875,
1715
+ "learning_rate": 2.4886877828054298e-05,
1716
+ "loss": 0.097,
1717
+ "step": 2200
1718
+ },
1719
+ {
1720
+ "epoch": 4.761904761904762,
1721
+ "eval_loss": 0.09769493341445923,
1722
+ "eval_runtime": 19.6594,
1723
+ "eval_samples_per_second": 25.433,
1724
+ "eval_steps_per_second": 0.814,
1725
+ "step": 2200
1726
+ },
1727
+ {
1728
+ "epoch": 4.783549783549784,
1729
+ "grad_norm": 0.296875,
1730
+ "learning_rate": 2.262443438914027e-05,
1731
+ "loss": 0.1083,
1732
+ "step": 2210
1733
+ },
1734
+ {
1735
+ "epoch": 4.805194805194805,
1736
+ "grad_norm": 0.2158203125,
1737
+ "learning_rate": 2.0361990950226245e-05,
1738
+ "loss": 0.1046,
1739
+ "step": 2220
1740
+ },
1741
+ {
1742
+ "epoch": 4.8268398268398265,
1743
+ "grad_norm": 0.26953125,
1744
+ "learning_rate": 1.8099547511312218e-05,
1745
+ "loss": 0.1139,
1746
+ "step": 2230
1747
+ },
1748
+ {
1749
+ "epoch": 4.848484848484849,
1750
+ "grad_norm": 0.28515625,
1751
+ "learning_rate": 1.583710407239819e-05,
1752
+ "loss": 0.1038,
1753
+ "step": 2240
1754
+ },
1755
+ {
1756
+ "epoch": 4.87012987012987,
1757
+ "grad_norm": 0.298828125,
1758
+ "learning_rate": 1.3574660633484164e-05,
1759
+ "loss": 0.1089,
1760
+ "step": 2250
1761
+ },
1762
+ {
1763
+ "epoch": 4.891774891774892,
1764
+ "grad_norm": 0.23046875,
1765
+ "learning_rate": 1.1312217194570136e-05,
1766
+ "loss": 0.0922,
1767
+ "step": 2260
1768
+ },
1769
+ {
1770
+ "epoch": 4.913419913419913,
1771
+ "grad_norm": 0.2578125,
1772
+ "learning_rate": 9.049773755656109e-06,
1773
+ "loss": 0.1041,
1774
+ "step": 2270
1775
+ },
1776
+ {
1777
+ "epoch": 4.935064935064935,
1778
+ "grad_norm": 0.255859375,
1779
+ "learning_rate": 6.787330316742082e-06,
1780
+ "loss": 0.0933,
1781
+ "step": 2280
1782
+ },
1783
+ {
1784
+ "epoch": 4.956709956709957,
1785
+ "grad_norm": 0.29296875,
1786
+ "learning_rate": 4.5248868778280546e-06,
1787
+ "loss": 0.1089,
1788
+ "step": 2290
1789
+ },
1790
+ {
1791
+ "epoch": 4.978354978354979,
1792
+ "grad_norm": 0.296875,
1793
+ "learning_rate": 2.2624434389140273e-06,
1794
+ "loss": 0.1094,
1795
+ "step": 2300
1796
+ },
1797
+ {
1798
+ "epoch": 4.978354978354979,
1799
+ "eval_loss": 0.09713861346244812,
1800
+ "eval_runtime": 20.5975,
1801
+ "eval_samples_per_second": 24.275,
1802
+ "eval_steps_per_second": 0.777,
1803
+ "step": 2300
1804
+ },
1805
+ {
1806
+ "epoch": 5.0,
1807
+ "grad_norm": 0.3359375,
1808
+ "learning_rate": 0.0,
1809
+ "loss": 0.1107,
1810
+ "step": 2310
1811
+ }
1812
+ ],
1813
+ "logging_steps": 10,
1814
+ "max_steps": 2310,
1815
+ "num_input_tokens_seen": 0,
1816
+ "num_train_epochs": 5,
1817
+ "save_steps": 500,
1818
+ "stateful_callbacks": {
1819
+ "TrainerControl": {
1820
+ "args": {
1821
+ "should_epoch_stop": false,
1822
+ "should_evaluate": false,
1823
+ "should_log": false,
1824
+ "should_save": true,
1825
+ "should_training_stop": true
1826
+ },
1827
+ "attributes": {}
1828
+ }
1829
+ },
1830
+ "total_flos": 5.556491100242671e+18,
1831
+ "train_batch_size": 256,
1832
+ "trial_name": null,
1833
+ "trial_params": null
1834
+ }
checkpoint-2310/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e723165fb4ce59d86427d7b00f9accdcf7438e283d47a4bdb986c5618c13fa4
3
+ size 5176
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 961d20526206465f9ebef9affd131d53a9f516e6
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "ColQwen2Processor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"../colpali/data_dir/eval_vidore/tatdqa_test": {"ndcg_at_1": 0.70109, "ndcg_at_3": 0.7923, "ndcg_at_5": 0.81432, "ndcg_at_10": 0.82714, "ndcg_at_20": 0.83121, "ndcg_at_50": 0.83523, "ndcg_at_100": 0.83688, "map_at_1": 0.70109, "map_at_3": 0.77005, "map_at_5": 0.78241, "map_at_10": 0.78785, "map_at_20": 0.78901, "map_at_50": 0.78967, "map_at_100": 0.78981, "recall_at_1": 0.70109, "recall_at_3": 0.85662, "recall_at_5": 0.90948, "recall_at_10": 0.94836, "recall_at_20": 0.96416, "recall_at_50": 0.9842, "recall_at_100": 0.99453, "precision_at_1": 0.70109, "precision_at_3": 0.28554, "precision_at_5": 0.1819, "precision_at_10": 0.09484, "precision_at_20": 0.04821, "precision_at_50": 0.01968, "precision_at_100": 0.00995, "mrr_at_1": 0.7017010935601458, "mrr_at_3": 0.7709599027946537, "mrr_at_5": 0.7835965978128797, "mrr_at_10": 0.7887963123686088, "mrr_at_20": 0.7900069324299046, "mrr_at_50": 0.7906871013277383, "mrr_at_100": 0.7908122337289102, "naucs_at_1_max": 0.31323987398365244, "naucs_at_1_std": -0.06973458951296707, "naucs_at_1_diff1": 0.8257166838058789, "naucs_at_3_max": 0.3926659737473996, "naucs_at_3_std": 0.06571917292636736, "naucs_at_3_diff1": 0.7756394870292411, "naucs_at_5_max": 0.397380358594201, "naucs_at_5_std": 0.13868537387746546, "naucs_at_5_diff1": 0.7396051349982516, "naucs_at_10_max": 0.501090641931301, "naucs_at_10_std": 0.36694999105347903, "naucs_at_10_diff1": 0.7174193926609567, "naucs_at_20_max": 0.4765529924218107, "naucs_at_20_std": 0.3737660736114713, "naucs_at_20_diff1": 0.6900626633277733, "naucs_at_50_max": 0.6429809235278162, "naucs_at_50_std": 0.5965680225588305, "naucs_at_50_diff1": 0.7246754428536203, "naucs_at_100_max": 0.6364067564396122, "naucs_at_100_std": 0.5448683368190432, "naucs_at_100_diff1": 0.6812946217425379}, "../colpali/data_dir/eval_vidore/shiftproject_test": {"ndcg_at_1": 0.81, "ndcg_at_3": 0.8894, "ndcg_at_5": 0.90663, "ndcg_at_10": 0.90952, "ndcg_at_20": 0.90952, "ndcg_at_50": 0.9115, "ndcg_at_100": 0.9115, "map_at_1": 0.81, "map_at_3": 0.87167, "map_at_5": 0.88167, "map_at_10": 0.88267, "map_at_20": 0.88267, "map_at_50": 0.88298, "map_at_100": 0.88298, "recall_at_1": 0.81, "recall_at_3": 0.94, "recall_at_5": 0.98, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.81, "precision_at_3": 0.31333, "precision_at_5": 0.196, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.82, "mrr_at_3": 0.8766666666666667, "mrr_at_5": 0.8866666666666667, "mrr_at_10": 0.8877777777777777, "mrr_at_20": 0.8877777777777777, "mrr_at_50": 0.8880902777777777, "mrr_at_100": 0.8880902777777777, "naucs_at_1_max": 0.0649588768400645, "naucs_at_1_std": -0.2740845513122743, "naucs_at_1_diff1": 0.6852637644716851, "naucs_at_3_max": 0.3546529723000309, "naucs_at_3_std": -0.11009959539371503, "naucs_at_3_diff1": 0.5325241207594116, "naucs_at_5_max": 0.722222222222224, "naucs_at_5_std": 0.3384687208216692, "naucs_at_5_diff1": 0.42250233426704475, "naucs_at_10_max": 0.7222222222222276, "naucs_at_10_std": 0.5541549953314738, "naucs_at_10_diff1": 0.7222222222222276, "naucs_at_20_max": 0.7222222222222276, "naucs_at_20_std": 0.5541549953314738, "naucs_at_20_diff1": 0.7222222222222276, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "../colpali/data_dir/eval_vidore/syntheticDocQA_artificial_intelligence_test": {"ndcg_at_1": 0.99, "ndcg_at_3": 0.99, "ndcg_at_5": 0.99387, "ndcg_at_10": 0.99387, "ndcg_at_20": 0.99387, "ndcg_at_50": 0.99387, "ndcg_at_100": 0.99387, "map_at_1": 0.99, "map_at_3": 0.99, "map_at_5": 0.992, "map_at_10": 0.992, "map_at_20": 0.992, "map_at_50": 0.992, "map_at_100": 0.992, "recall_at_1": 0.99, "recall_at_3": 0.99, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.99, "precision_at_3": 0.33, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.99, "mrr_at_3": 0.99, "mrr_at_5": 0.992, "mrr_at_10": 0.992, "mrr_at_20": 0.992, "mrr_at_50": 0.992, "mrr_at_100": 0.992, "naucs_at_1_max": 0.8692810457516276, "naucs_at_1_std": -0.5634920634920657, "naucs_at_1_diff1": 1.0, "naucs_at_3_max": 0.8692810457516356, "naucs_at_3_std": -0.5634920634921204, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "../colpali/data_dir/eval_vidore/syntheticDocQA_government_reports_test": {"ndcg_at_1": 0.91, "ndcg_at_3": 0.95417, "ndcg_at_5": 0.96278, "ndcg_at_10": 0.96278, "ndcg_at_20": 0.96278, "ndcg_at_50": 0.96278, "ndcg_at_100": 0.96278, "map_at_1": 0.91, "map_at_3": 0.945, "map_at_5": 0.95, "map_at_10": 0.95, "map_at_20": 0.95, "map_at_50": 0.95, "map_at_100": 0.95, "recall_at_1": 0.91, "recall_at_3": 0.98, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.91, "precision_at_3": 0.32667, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.92, "mrr_at_3": 0.9566666666666667, "mrr_at_5": 0.9566666666666667, "mrr_at_10": 0.9566666666666667, "mrr_at_20": 0.9566666666666667, "mrr_at_50": 0.9566666666666667, "mrr_at_100": 0.9566666666666667, "naucs_at_1_max": 0.6380329909741665, "naucs_at_1_std": 0.3872289656603365, "naucs_at_1_diff1": 0.9419026870007259, "naucs_at_3_max": 0.8611111111111119, "naucs_at_3_std": 0.5401493930905577, "naucs_at_3_diff1": 0.9346405228758099, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "../colpali/data_dir/eval_vidore/arxivqa_test_subsampled": {"ndcg_at_1": 0.824, "ndcg_at_3": 0.86576, "ndcg_at_5": 0.88065, "ndcg_at_10": 0.88761, "ndcg_at_20": 0.89161, "ndcg_at_50": 0.89571, "ndcg_at_100": 0.89671, "map_at_1": 0.824, "map_at_3": 0.85533, "map_at_5": 0.86363, "map_at_10": 0.86642, "map_at_20": 0.86749, "map_at_50": 0.8682, "map_at_100": 0.8683, "recall_at_1": 0.824, "recall_at_3": 0.896, "recall_at_5": 0.932, "recall_at_10": 0.954, "recall_at_20": 0.97, "recall_at_50": 0.99, "recall_at_100": 0.996, "precision_at_1": 0.824, "precision_at_3": 0.29867, "precision_at_5": 0.1864, "precision_at_10": 0.0954, "precision_at_20": 0.0485, "precision_at_50": 0.0198, "precision_at_100": 0.00996, "mrr_at_1": 0.826, "mrr_at_3": 0.8566666666666666, "mrr_at_5": 0.8647666666666667, "mrr_at_10": 0.8674404761904762, "mrr_at_20": 0.868713893416525, "mrr_at_50": 0.8694424481678229, "mrr_at_100": 0.8695414304104477, "naucs_at_1_max": 0.7663278157610652, "naucs_at_1_std": -0.09768014573587591, "naucs_at_1_diff1": 0.9187263853904275, "naucs_at_3_max": 0.8138309391467555, "naucs_at_3_std": -0.023388435717895166, "naucs_at_3_diff1": 0.8748014870425184, "naucs_at_5_max": 0.8622919756137744, "naucs_at_5_std": 0.09893172955456826, "naucs_at_5_diff1": 0.8950952930191681, "naucs_at_10_max": 0.8887671010433149, "naucs_at_10_std": 0.18117971826411405, "naucs_at_10_diff1": 0.9102829537612158, "naucs_at_20_max": 0.9081854964207933, "naucs_at_20_std": 0.31092436974789345, "naucs_at_20_diff1": 0.9193899782135069, "naucs_at_50_max": 1.0, "naucs_at_50_std": 0.7428571428571219, "naucs_at_50_diff1": 0.9215686274509768, "naucs_at_100_max": 1.0, "naucs_at_100_std": 0.5613912231558791, "naucs_at_100_diff1": 0.9346405228758466}, "../colpali/data_dir/eval_vidore/docvqa_test_subsampled": {"ndcg_at_1": 0.52993, "ndcg_at_3": 0.58573, "ndcg_at_5": 0.60558, "ndcg_at_10": 0.62266, "ndcg_at_20": 0.63582, "ndcg_at_50": 0.64908, "ndcg_at_100": 0.6581, "map_at_1": 0.52993, "map_at_3": 0.57206, "map_at_5": 0.58293, "map_at_10": 0.58991, "map_at_20": 0.59366, "map_at_50": 0.59581, "map_at_100": 0.59662, "recall_at_1": 0.52993, "recall_at_3": 0.62528, "recall_at_5": 0.67406, "recall_at_10": 0.72727, "recall_at_20": 0.77827, "recall_at_50": 0.84479, "recall_at_100": 0.90022, "precision_at_1": 0.52993, "precision_at_3": 0.20843, "precision_at_5": 0.13481, "precision_at_10": 0.07273, "precision_at_20": 0.03891, "precision_at_50": 0.0169, "precision_at_100": 0.009, "mrr_at_1": 0.5232815964523282, "mrr_at_3": 0.5728011825572801, "mrr_at_5": 0.5826681448632669, "mrr_at_10": 0.5891273360785556, "mrr_at_20": 0.5925723253011941, "mrr_at_50": 0.5943296372892853, "mrr_at_100": 0.59515893309537, "naucs_at_1_max": 0.1489445922678588, "naucs_at_1_std": 0.5944168012150516, "naucs_at_1_diff1": 0.9184631698098695, "naucs_at_3_max": 0.01752251361569101, "naucs_at_3_std": 0.7203256897672715, "naucs_at_3_diff1": 0.8894280781702324, "naucs_at_5_max": -0.04548428009159777, "naucs_at_5_std": 0.7690453232976177, "naucs_at_5_diff1": 0.8644439246273121, "naucs_at_10_max": -0.13892914655317037, "naucs_at_10_std": 0.8207534993760452, "naucs_at_10_diff1": 0.8438993391008719, "naucs_at_20_max": -0.27349363756086625, "naucs_at_20_std": 0.8575543278988474, "naucs_at_20_diff1": 0.8389957258659689, "naucs_at_50_max": -0.43528705588098854, "naucs_at_50_std": 0.9002887869267794, "naucs_at_50_diff1": 0.8407727389585528, "naucs_at_100_max": -0.4873376707138829, "naucs_at_100_std": 0.8779309480426964, "naucs_at_100_diff1": 0.8126388341509826}, "../colpali/data_dir/eval_vidore/syntheticDocQA_healthcare_industry_test": {"ndcg_at_1": 0.96, "ndcg_at_3": 0.97762, "ndcg_at_5": 0.98149, "ndcg_at_10": 0.98149, "ndcg_at_20": 0.98149, "ndcg_at_50": 0.98149, "ndcg_at_100": 0.98149, "map_at_1": 0.96, "map_at_3": 0.97333, "map_at_5": 0.97533, "map_at_10": 0.97533, "map_at_20": 0.97533, "map_at_50": 0.97533, "map_at_100": 0.97533, "recall_at_1": 0.96, "recall_at_3": 0.99, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.96, "precision_at_3": 0.33, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.96, "mrr_at_3": 0.9733333333333333, "mrr_at_5": 0.9753333333333333, "mrr_at_10": 0.9753333333333333, "mrr_at_20": 0.9753333333333333, "mrr_at_50": 0.9753333333333333, "mrr_at_100": 0.9753333333333333, "naucs_at_1_max": 0.6785714285714297, "naucs_at_1_std": -0.529178338001864, "naucs_at_1_diff1": 1.0, "naucs_at_3_max": 1.0, "naucs_at_3_std": 0.35807656395889226, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "../colpali/data_dir/eval_vidore/infovqa_test_subsampled": {"ndcg_at_1": 0.89069, "ndcg_at_3": 0.91896, "ndcg_at_5": 0.92636, "ndcg_at_10": 0.93041, "ndcg_at_20": 0.93306, "ndcg_at_50": 0.93549, "ndcg_at_100": 0.93583, "map_at_1": 0.89069, "map_at_3": 0.91194, "map_at_5": 0.91599, "map_at_10": 0.91774, "map_at_20": 0.91851, "map_at_50": 0.91891, "map_at_100": 0.91894, "recall_at_1": 0.89069, "recall_at_3": 0.93927, "recall_at_5": 0.95749, "recall_at_10": 0.96964, "recall_at_20": 0.97976, "recall_at_50": 0.9919, "recall_at_100": 0.99393, "precision_at_1": 0.89069, "precision_at_3": 0.31309, "precision_at_5": 0.1915, "precision_at_10": 0.09696, "precision_at_20": 0.04899, "precision_at_50": 0.01984, "precision_at_100": 0.00994, "mrr_at_1": 0.888663967611336, "mrr_at_3": 0.9102564102564102, "mrr_at_5": 0.9148110661268556, "mrr_at_10": 0.9165558126084441, "mrr_at_20": 0.9173312497615903, "mrr_at_50": 0.917719246204226, "mrr_at_100": 0.917752984395859, "naucs_at_1_max": 0.6452597879999299, "naucs_at_1_std": -0.1583967206391628, "naucs_at_1_diff1": 0.9382939669972173, "naucs_at_3_max": 0.6792175380169426, "naucs_at_3_std": -0.07352824072374452, "naucs_at_3_diff1": 0.9330460900047705, "naucs_at_5_max": 0.8390629595590892, "naucs_at_5_std": 0.22116664077349757, "naucs_at_5_diff1": 0.9626852988386374, "naucs_at_10_max": 0.8657206615100057, "naucs_at_10_std": 0.2744376241740944, "naucs_at_10_diff1": 0.9564661819784096, "naucs_at_20_max": 0.9183327616354467, "naucs_at_20_std": 0.6804227380555364, "naucs_at_20_diff1": 0.9477594183740975, "naucs_at_50_max": 0.8979159520443043, "naucs_at_50_std": 0.674633185026432, "naucs_at_50_diff1": 0.9346992729676393, "naucs_at_100_max": 0.8638879360590712, "naucs_at_100_std": 0.5661775800352391, "naucs_at_100_diff1": 0.9129323639568517}, "../colpali/data_dir/eval_vidore/syntheticDocQA_energy_test": {"ndcg_at_1": 0.94, "ndcg_at_3": 0.95893, "ndcg_at_5": 0.95893, "ndcg_at_10": 0.96542, "ndcg_at_20": 0.96542, "ndcg_at_50": 0.9676, "ndcg_at_100": 0.9676, "map_at_1": 0.94, "map_at_3": 0.955, "map_at_5": 0.955, "map_at_10": 0.95768, "map_at_20": 0.95768, "map_at_50": 0.95811, "map_at_100": 0.95811, "recall_at_1": 0.94, "recall_at_3": 0.97, "recall_at_5": 0.97, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.94, "precision_at_3": 0.32333, "precision_at_5": 0.194, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.95, "mrr_at_3": 0.96, "mrr_at_5": 0.96, "mrr_at_10": 0.9625396825396826, "mrr_at_20": 0.9630659983291562, "mrr_at_50": 0.9630659983291562, "mrr_at_100": 0.9630659983291562, "naucs_at_1_max": 0.06847183317771653, "naucs_at_1_std": -0.9000933706816028, "naucs_at_1_diff1": 1.0, "naucs_at_3_max": 0.6150015561780285, "naucs_at_3_std": -1.21708683473389, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 0.6150015561780299, "naucs_at_5_std": -1.2170868347338937, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 0.7222222222222276, "naucs_at_10_std": -1.7399626517273863, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 0.7222222222222276, "naucs_at_20_std": -1.7399626517273863, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "../colpali/data_dir/eval_vidore/tabfquad_test_subsampled": {"ndcg_at_1": 0.84286, "ndcg_at_3": 0.88737, "ndcg_at_5": 0.89459, "ndcg_at_10": 0.89794, "ndcg_at_20": 0.90691, "ndcg_at_50": 0.90985, "ndcg_at_100": 0.91045, "map_at_1": 0.84286, "map_at_3": 0.87679, "map_at_5": 0.88071, "map_at_10": 0.88203, "map_at_20": 0.88445, "map_at_50": 0.88496, "map_at_100": 0.88502, "recall_at_1": 0.84286, "recall_at_3": 0.91786, "recall_at_5": 0.93571, "recall_at_10": 0.94643, "recall_at_20": 0.98214, "recall_at_50": 0.99643, "recall_at_100": 1.0, "precision_at_1": 0.84286, "precision_at_3": 0.30595, "precision_at_5": 0.18714, "precision_at_10": 0.09464, "precision_at_20": 0.04911, "precision_at_50": 0.01993, "precision_at_100": 0.01, "mrr_at_1": 0.8392857142857143, "mrr_at_3": 0.8744047619047619, "mrr_at_5": 0.8783333333333333, "mrr_at_10": 0.8797108843537415, "mrr_at_20": 0.8821667166283763, "mrr_at_50": 0.8826871907663073, "mrr_at_100": 0.8827487671209872, "naucs_at_1_max": 0.5016709740664825, "naucs_at_1_std": 0.19134881026646522, "naucs_at_1_diff1": 0.9055454059353004, "naucs_at_3_max": 0.6889741403807901, "naucs_at_3_std": 0.34459870904883405, "naucs_at_3_diff1": 0.8472780416514442, "naucs_at_5_max": 0.6857039111941077, "naucs_at_5_std": 0.40758896151053337, "naucs_at_5_diff1": 0.8275495383338527, "naucs_at_10_max": 0.6228446934329287, "naucs_at_10_std": 0.31633986928104846, "naucs_at_10_diff1": 0.8017740429505158, "naucs_at_20_max": 0.9183006535947714, "naucs_at_20_std": 0.7605042016806759, "naucs_at_20_diff1": 0.9183006535947714, "naucs_at_50_max": 1.0, "naucs_at_50_std": 1.0, "naucs_at_50_diff1": 0.8692810457515607, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0}}
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
3
+ size 11420371
tokenizer_config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "model_max_length": 32768,
138
+ "pad_token": "<|endoftext|>",
139
+ "padding_side": "left",
140
+ "processor_class": "ColQwen2Processor",
141
+ "split_special_tokens": false,
142
+ "tokenizer_class": "Qwen2Tokenizer",
143
+ "unk_token": null
144
+ }
training_config.yml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/colqwen2-ba256-ckpt-5e-nopad
4
+ processor:
5
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
6
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2Processor
7
+ pretrained_model_name_or_path: "./models/colqwen2_base" # "./models/paligemma-3b-mix-448"
8
+ # num_image_tokens: 2048
9
+ # max_length: 50
10
+
11
+ model:
12
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
13
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2
14
+ pretrained_model_name_or_path: "./models/colqwen2_base"
15
+ torch_dtype: !ext torch.bfloat16
16
+ use_cache: false
17
+ attn_implementation: "flash_attention_2"
18
+ # device_map: "auto"
19
+ # quantization_config:
20
+ # (): transformers.BitsAndBytesConfig
21
+ # load_in_4bit: true
22
+ # bnb_4bit_quant_type: "nf4"
23
+ # bnb_4bit_compute_dtype: "bfloat16"
24
+ # bnb_4bit_use_double_quant: true
25
+
26
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set
27
+ eval_dataset_loader: !import ../data/test_data.yaml
28
+
29
+ # max_length: 50
30
+ run_eval: true
31
+ add_suffix: true
32
+ loss_func:
33
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
34
+ tr_args:
35
+ (): transformers.training_args.TrainingArguments
36
+ output_dir: null
37
+ overwrite_output_dir: true
38
+ num_train_epochs: 5
39
+ per_device_train_batch_size: 64
40
+ gradient_checkpointing: true
41
+ gradient_checkpointing_kwargs: { "use_reentrant": false }
42
+ # gradient_checkpointing: true
43
+ # 6 x 8 gpus = 48 batch size
44
+ # gradient_accumulation_steps: 4
45
+ per_device_eval_batch_size: 8
46
+ eval_strategy: "steps"
47
+ dataloader_num_workers: 8
48
+ # bf16: true
49
+ save_steps: 500
50
+ logging_steps: 10
51
+ eval_steps: 100
52
+ warmup_steps: 100
53
+ learning_rate: 5e-4
54
+ save_total_limit: 1
55
+ # resume_from_checkpoint: true
56
+ # optim: "paged_adamw_8bit"
57
+ # wandb logging
58
+ # wandb_project: "colqwen2"
59
+ # run_name: "colqwen2-ba32-nolora"
60
+ report_to: "wandb"
61
+
62
+
63
+ peft_config:
64
+ (): peft.LoraConfig
65
+ r: 32
66
+ lora_alpha: 32
67
+ lora_dropout: 0.1
68
+ init_lora_weights: "gaussian"
69
+ bias: "none"
70
+ task_type: "FEATURE_EXTRACTION"
71
+ target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
72
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
73
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff