manu commited on
Commit
164bfaf
1 Parent(s): 18d3678

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colqwen2-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colqwen2-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:681fac1e41b24371a7c7fffa7da208c49f3387c4afe8fe4141fe74305701ec14
3
+ size 74018232
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-3694/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./models/colqwen2_base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-3694/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/colqwen2_base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
checkpoint-3694/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:681fac1e41b24371a7c7fffa7da208c49f3387c4afe8fe4141fe74305701ec14
3
+ size 74018232
checkpoint-3694/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101c18553678ddee6c2dccabe942ab94ff178fcfebb431eb8db680a52ec7b52d
3
+ size 148262384
checkpoint-3694/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df66ef31873d037adee87d02845b81007ae026666e907682dd4875180ea670eb
3
+ size 14244
checkpoint-3694/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9acc3c13b7f7fcf0134b49941f750c58e40b0ebf0bd4fd58a4084708da1537b
3
+ size 1064
checkpoint-3694/trainer_state.json ADDED
@@ -0,0 +1,2904 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 100,
6
+ "global_step": 3694,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0027070925825663237,
13
+ "grad_norm": 7.59375,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 0.7602,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.005414185165132647,
20
+ "grad_norm": 5.96875,
21
+ "learning_rate": 4.000000000000001e-06,
22
+ "loss": 0.7215,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.008121277747698972,
27
+ "grad_norm": 5.46875,
28
+ "learning_rate": 6e-06,
29
+ "loss": 0.7449,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.010828370330265295,
34
+ "grad_norm": 8.875,
35
+ "learning_rate": 8.000000000000001e-06,
36
+ "loss": 0.676,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.01353546291283162,
41
+ "grad_norm": 5.15625,
42
+ "learning_rate": 1e-05,
43
+ "loss": 0.6583,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.016242555495397944,
48
+ "grad_norm": 3.984375,
49
+ "learning_rate": 1.2e-05,
50
+ "loss": 0.5955,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.018949648077964266,
55
+ "grad_norm": 4.5,
56
+ "learning_rate": 1.4000000000000001e-05,
57
+ "loss": 0.6213,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.02165674066053059,
62
+ "grad_norm": 2.96875,
63
+ "learning_rate": 1.6000000000000003e-05,
64
+ "loss": 0.5522,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.024363833243096916,
69
+ "grad_norm": 2.734375,
70
+ "learning_rate": 1.8e-05,
71
+ "loss": 0.5117,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.02707092582566324,
76
+ "grad_norm": 3.5625,
77
+ "learning_rate": 2e-05,
78
+ "loss": 0.4711,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.02707092582566324,
83
+ "eval_loss": 0.4397936165332794,
84
+ "eval_runtime": 107.3458,
85
+ "eval_samples_per_second": 4.658,
86
+ "eval_steps_per_second": 0.298,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 0.02977801840822956,
91
+ "grad_norm": 2.390625,
92
+ "learning_rate": 2.2000000000000003e-05,
93
+ "loss": 0.4625,
94
+ "step": 110
95
+ },
96
+ {
97
+ "epoch": 0.03248511099079589,
98
+ "grad_norm": 2.34375,
99
+ "learning_rate": 2.4e-05,
100
+ "loss": 0.4371,
101
+ "step": 120
102
+ },
103
+ {
104
+ "epoch": 0.03519220357336221,
105
+ "grad_norm": 3.25,
106
+ "learning_rate": 2.6000000000000002e-05,
107
+ "loss": 0.4676,
108
+ "step": 130
109
+ },
110
+ {
111
+ "epoch": 0.03789929615592853,
112
+ "grad_norm": 2.609375,
113
+ "learning_rate": 2.8000000000000003e-05,
114
+ "loss": 0.4312,
115
+ "step": 140
116
+ },
117
+ {
118
+ "epoch": 0.040606388738494856,
119
+ "grad_norm": 1.90625,
120
+ "learning_rate": 3e-05,
121
+ "loss": 0.3917,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.04331348132106118,
126
+ "grad_norm": 2.34375,
127
+ "learning_rate": 3.2000000000000005e-05,
128
+ "loss": 0.3707,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.0460205739036275,
133
+ "grad_norm": 1.953125,
134
+ "learning_rate": 3.4000000000000007e-05,
135
+ "loss": 0.3532,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.04872766648619383,
140
+ "grad_norm": 1.875,
141
+ "learning_rate": 3.6e-05,
142
+ "loss": 0.3269,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.051434759068760154,
147
+ "grad_norm": 1.5390625,
148
+ "learning_rate": 3.8e-05,
149
+ "loss": 0.3304,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.05414185165132648,
154
+ "grad_norm": 1.4453125,
155
+ "learning_rate": 4e-05,
156
+ "loss": 0.288,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.05414185165132648,
161
+ "eval_loss": 0.24338363111019135,
162
+ "eval_runtime": 111.3917,
163
+ "eval_samples_per_second": 4.489,
164
+ "eval_steps_per_second": 0.287,
165
+ "step": 200
166
+ },
167
+ {
168
+ "epoch": 0.0568489442338928,
169
+ "grad_norm": 1.609375,
170
+ "learning_rate": 4.2e-05,
171
+ "loss": 0.2954,
172
+ "step": 210
173
+ },
174
+ {
175
+ "epoch": 0.05955603681645912,
176
+ "grad_norm": 1.5625,
177
+ "learning_rate": 4.4000000000000006e-05,
178
+ "loss": 0.2691,
179
+ "step": 220
180
+ },
181
+ {
182
+ "epoch": 0.062263129399025445,
183
+ "grad_norm": 1.4921875,
184
+ "learning_rate": 4.600000000000001e-05,
185
+ "loss": 0.2763,
186
+ "step": 230
187
+ },
188
+ {
189
+ "epoch": 0.06497022198159177,
190
+ "grad_norm": 1.421875,
191
+ "learning_rate": 4.8e-05,
192
+ "loss": 0.2552,
193
+ "step": 240
194
+ },
195
+ {
196
+ "epoch": 0.0676773145641581,
197
+ "grad_norm": 1.1484375,
198
+ "learning_rate": 5e-05,
199
+ "loss": 0.222,
200
+ "step": 250
201
+ },
202
+ {
203
+ "epoch": 0.07038440714672442,
204
+ "grad_norm": 1.515625,
205
+ "learning_rate": 4.98548199767712e-05,
206
+ "loss": 0.2251,
207
+ "step": 260
208
+ },
209
+ {
210
+ "epoch": 0.07309149972929074,
211
+ "grad_norm": 1.734375,
212
+ "learning_rate": 4.9709639953542396e-05,
213
+ "loss": 0.2244,
214
+ "step": 270
215
+ },
216
+ {
217
+ "epoch": 0.07579859231185707,
218
+ "grad_norm": 1.125,
219
+ "learning_rate": 4.956445993031359e-05,
220
+ "loss": 0.2086,
221
+ "step": 280
222
+ },
223
+ {
224
+ "epoch": 0.07850568489442339,
225
+ "grad_norm": 0.984375,
226
+ "learning_rate": 4.9419279907084783e-05,
227
+ "loss": 0.1871,
228
+ "step": 290
229
+ },
230
+ {
231
+ "epoch": 0.08121277747698971,
232
+ "grad_norm": 1.2578125,
233
+ "learning_rate": 4.9274099883855984e-05,
234
+ "loss": 0.1851,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 0.08121277747698971,
239
+ "eval_loss": 0.15493114292621613,
240
+ "eval_runtime": 108.8629,
241
+ "eval_samples_per_second": 4.593,
242
+ "eval_steps_per_second": 0.294,
243
+ "step": 300
244
+ },
245
+ {
246
+ "epoch": 0.08391987005955603,
247
+ "grad_norm": 0.9296875,
248
+ "learning_rate": 4.9128919860627184e-05,
249
+ "loss": 0.2006,
250
+ "step": 310
251
+ },
252
+ {
253
+ "epoch": 0.08662696264212236,
254
+ "grad_norm": 1.0546875,
255
+ "learning_rate": 4.898373983739837e-05,
256
+ "loss": 0.167,
257
+ "step": 320
258
+ },
259
+ {
260
+ "epoch": 0.08933405522468868,
261
+ "grad_norm": 1.515625,
262
+ "learning_rate": 4.883855981416957e-05,
263
+ "loss": 0.1796,
264
+ "step": 330
265
+ },
266
+ {
267
+ "epoch": 0.092041147807255,
268
+ "grad_norm": 0.875,
269
+ "learning_rate": 4.869337979094077e-05,
270
+ "loss": 0.1842,
271
+ "step": 340
272
+ },
273
+ {
274
+ "epoch": 0.09474824038982133,
275
+ "grad_norm": 1.2578125,
276
+ "learning_rate": 4.8548199767711965e-05,
277
+ "loss": 0.1761,
278
+ "step": 350
279
+ },
280
+ {
281
+ "epoch": 0.09745533297238766,
282
+ "grad_norm": 2.609375,
283
+ "learning_rate": 4.8403019744483166e-05,
284
+ "loss": 0.1975,
285
+ "step": 360
286
+ },
287
+ {
288
+ "epoch": 0.10016242555495398,
289
+ "grad_norm": 0.7109375,
290
+ "learning_rate": 4.825783972125435e-05,
291
+ "loss": 0.19,
292
+ "step": 370
293
+ },
294
+ {
295
+ "epoch": 0.10286951813752031,
296
+ "grad_norm": 1.140625,
297
+ "learning_rate": 4.811265969802555e-05,
298
+ "loss": 0.1728,
299
+ "step": 380
300
+ },
301
+ {
302
+ "epoch": 0.10557661072008663,
303
+ "grad_norm": 0.62890625,
304
+ "learning_rate": 4.796747967479675e-05,
305
+ "loss": 0.142,
306
+ "step": 390
307
+ },
308
+ {
309
+ "epoch": 0.10828370330265295,
310
+ "grad_norm": 1.5390625,
311
+ "learning_rate": 4.782229965156795e-05,
312
+ "loss": 0.1999,
313
+ "step": 400
314
+ },
315
+ {
316
+ "epoch": 0.10828370330265295,
317
+ "eval_loss": 0.1356707364320755,
318
+ "eval_runtime": 112.7304,
319
+ "eval_samples_per_second": 4.435,
320
+ "eval_steps_per_second": 0.284,
321
+ "step": 400
322
+ },
323
+ {
324
+ "epoch": 0.11099079588521928,
325
+ "grad_norm": 1.5859375,
326
+ "learning_rate": 4.767711962833915e-05,
327
+ "loss": 0.1503,
328
+ "step": 410
329
+ },
330
+ {
331
+ "epoch": 0.1136978884677856,
332
+ "grad_norm": 1.59375,
333
+ "learning_rate": 4.7531939605110334e-05,
334
+ "loss": 0.1375,
335
+ "step": 420
336
+ },
337
+ {
338
+ "epoch": 0.11640498105035192,
339
+ "grad_norm": 0.6875,
340
+ "learning_rate": 4.7386759581881534e-05,
341
+ "loss": 0.1399,
342
+ "step": 430
343
+ },
344
+ {
345
+ "epoch": 0.11911207363291824,
346
+ "grad_norm": 1.8125,
347
+ "learning_rate": 4.7241579558652734e-05,
348
+ "loss": 0.176,
349
+ "step": 440
350
+ },
351
+ {
352
+ "epoch": 0.12181916621548457,
353
+ "grad_norm": 1.0625,
354
+ "learning_rate": 4.709639953542393e-05,
355
+ "loss": 0.1507,
356
+ "step": 450
357
+ },
358
+ {
359
+ "epoch": 0.12452625879805089,
360
+ "grad_norm": 1.4609375,
361
+ "learning_rate": 4.695121951219512e-05,
362
+ "loss": 0.1461,
363
+ "step": 460
364
+ },
365
+ {
366
+ "epoch": 0.12723335138061723,
367
+ "grad_norm": 0.80078125,
368
+ "learning_rate": 4.680603948896632e-05,
369
+ "loss": 0.1568,
370
+ "step": 470
371
+ },
372
+ {
373
+ "epoch": 0.12994044396318355,
374
+ "grad_norm": 0.44921875,
375
+ "learning_rate": 4.6660859465737516e-05,
376
+ "loss": 0.142,
377
+ "step": 480
378
+ },
379
+ {
380
+ "epoch": 0.13264753654574987,
381
+ "grad_norm": 0.69140625,
382
+ "learning_rate": 4.6515679442508716e-05,
383
+ "loss": 0.1476,
384
+ "step": 490
385
+ },
386
+ {
387
+ "epoch": 0.1353546291283162,
388
+ "grad_norm": 1.1875,
389
+ "learning_rate": 4.637049941927991e-05,
390
+ "loss": 0.1893,
391
+ "step": 500
392
+ },
393
+ {
394
+ "epoch": 0.1353546291283162,
395
+ "eval_loss": 0.13171279430389404,
396
+ "eval_runtime": 109.4979,
397
+ "eval_samples_per_second": 4.566,
398
+ "eval_steps_per_second": 0.292,
399
+ "step": 500
400
+ },
401
+ {
402
+ "epoch": 0.13806172171088252,
403
+ "grad_norm": 0.9453125,
404
+ "learning_rate": 4.62253193960511e-05,
405
+ "loss": 0.1404,
406
+ "step": 510
407
+ },
408
+ {
409
+ "epoch": 0.14076881429344884,
410
+ "grad_norm": 1.5703125,
411
+ "learning_rate": 4.6080139372822303e-05,
412
+ "loss": 0.1502,
413
+ "step": 520
414
+ },
415
+ {
416
+ "epoch": 0.14347590687601516,
417
+ "grad_norm": 1.0625,
418
+ "learning_rate": 4.59349593495935e-05,
419
+ "loss": 0.1486,
420
+ "step": 530
421
+ },
422
+ {
423
+ "epoch": 0.1461829994585815,
424
+ "grad_norm": 1.53125,
425
+ "learning_rate": 4.57897793263647e-05,
426
+ "loss": 0.1222,
427
+ "step": 540
428
+ },
429
+ {
430
+ "epoch": 0.1488900920411478,
431
+ "grad_norm": 1.1484375,
432
+ "learning_rate": 4.564459930313589e-05,
433
+ "loss": 0.1337,
434
+ "step": 550
435
+ },
436
+ {
437
+ "epoch": 0.15159718462371413,
438
+ "grad_norm": 2.515625,
439
+ "learning_rate": 4.5499419279907084e-05,
440
+ "loss": 0.1657,
441
+ "step": 560
442
+ },
443
+ {
444
+ "epoch": 0.15430427720628045,
445
+ "grad_norm": 0.546875,
446
+ "learning_rate": 4.5354239256678285e-05,
447
+ "loss": 0.1443,
448
+ "step": 570
449
+ },
450
+ {
451
+ "epoch": 0.15701136978884678,
452
+ "grad_norm": 3.875,
453
+ "learning_rate": 4.520905923344948e-05,
454
+ "loss": 0.1368,
455
+ "step": 580
456
+ },
457
+ {
458
+ "epoch": 0.1597184623714131,
459
+ "grad_norm": 1.34375,
460
+ "learning_rate": 4.506387921022068e-05,
461
+ "loss": 0.1877,
462
+ "step": 590
463
+ },
464
+ {
465
+ "epoch": 0.16242555495397942,
466
+ "grad_norm": 2.21875,
467
+ "learning_rate": 4.491869918699187e-05,
468
+ "loss": 0.097,
469
+ "step": 600
470
+ },
471
+ {
472
+ "epoch": 0.16242555495397942,
473
+ "eval_loss": 0.09729121625423431,
474
+ "eval_runtime": 109.794,
475
+ "eval_samples_per_second": 4.554,
476
+ "eval_steps_per_second": 0.291,
477
+ "step": 600
478
+ },
479
+ {
480
+ "epoch": 0.16513264753654575,
481
+ "grad_norm": 1.09375,
482
+ "learning_rate": 4.4773519163763066e-05,
483
+ "loss": 0.1161,
484
+ "step": 610
485
+ },
486
+ {
487
+ "epoch": 0.16783974011911207,
488
+ "grad_norm": 1.578125,
489
+ "learning_rate": 4.4628339140534266e-05,
490
+ "loss": 0.1137,
491
+ "step": 620
492
+ },
493
+ {
494
+ "epoch": 0.1705468327016784,
495
+ "grad_norm": 1.8515625,
496
+ "learning_rate": 4.448315911730546e-05,
497
+ "loss": 0.0872,
498
+ "step": 630
499
+ },
500
+ {
501
+ "epoch": 0.17325392528424471,
502
+ "grad_norm": 2.59375,
503
+ "learning_rate": 4.433797909407666e-05,
504
+ "loss": 0.1271,
505
+ "step": 640
506
+ },
507
+ {
508
+ "epoch": 0.17596101786681104,
509
+ "grad_norm": 1.390625,
510
+ "learning_rate": 4.4192799070847854e-05,
511
+ "loss": 0.1168,
512
+ "step": 650
513
+ },
514
+ {
515
+ "epoch": 0.17866811044937736,
516
+ "grad_norm": 2.5,
517
+ "learning_rate": 4.404761904761905e-05,
518
+ "loss": 0.0993,
519
+ "step": 660
520
+ },
521
+ {
522
+ "epoch": 0.18137520303194368,
523
+ "grad_norm": 3.140625,
524
+ "learning_rate": 4.390243902439025e-05,
525
+ "loss": 0.0734,
526
+ "step": 670
527
+ },
528
+ {
529
+ "epoch": 0.18408229561451,
530
+ "grad_norm": 5.03125,
531
+ "learning_rate": 4.375725900116144e-05,
532
+ "loss": 0.1519,
533
+ "step": 680
534
+ },
535
+ {
536
+ "epoch": 0.18678938819707633,
537
+ "grad_norm": 1.2734375,
538
+ "learning_rate": 4.361207897793264e-05,
539
+ "loss": 0.1401,
540
+ "step": 690
541
+ },
542
+ {
543
+ "epoch": 0.18949648077964265,
544
+ "grad_norm": 2.296875,
545
+ "learning_rate": 4.3466898954703835e-05,
546
+ "loss": 0.1172,
547
+ "step": 700
548
+ },
549
+ {
550
+ "epoch": 0.18949648077964265,
551
+ "eval_loss": 0.09507937729358673,
552
+ "eval_runtime": 109.6485,
553
+ "eval_samples_per_second": 4.56,
554
+ "eval_steps_per_second": 0.292,
555
+ "step": 700
556
+ },
557
+ {
558
+ "epoch": 0.19220357336220897,
559
+ "grad_norm": 3.21875,
560
+ "learning_rate": 4.332171893147503e-05,
561
+ "loss": 0.1606,
562
+ "step": 710
563
+ },
564
+ {
565
+ "epoch": 0.19491066594477532,
566
+ "grad_norm": 1.171875,
567
+ "learning_rate": 4.317653890824623e-05,
568
+ "loss": 0.1001,
569
+ "step": 720
570
+ },
571
+ {
572
+ "epoch": 0.19761775852734165,
573
+ "grad_norm": 3.53125,
574
+ "learning_rate": 4.303135888501742e-05,
575
+ "loss": 0.1171,
576
+ "step": 730
577
+ },
578
+ {
579
+ "epoch": 0.20032485110990797,
580
+ "grad_norm": 0.69140625,
581
+ "learning_rate": 4.2886178861788616e-05,
582
+ "loss": 0.1162,
583
+ "step": 740
584
+ },
585
+ {
586
+ "epoch": 0.2030319436924743,
587
+ "grad_norm": 2.828125,
588
+ "learning_rate": 4.2740998838559817e-05,
589
+ "loss": 0.1288,
590
+ "step": 750
591
+ },
592
+ {
593
+ "epoch": 0.20573903627504062,
594
+ "grad_norm": 1.875,
595
+ "learning_rate": 4.259581881533101e-05,
596
+ "loss": 0.1707,
597
+ "step": 760
598
+ },
599
+ {
600
+ "epoch": 0.20844612885760694,
601
+ "grad_norm": 0.8515625,
602
+ "learning_rate": 4.245063879210221e-05,
603
+ "loss": 0.1141,
604
+ "step": 770
605
+ },
606
+ {
607
+ "epoch": 0.21115322144017326,
608
+ "grad_norm": 2.21875,
609
+ "learning_rate": 4.2305458768873404e-05,
610
+ "loss": 0.1184,
611
+ "step": 780
612
+ },
613
+ {
614
+ "epoch": 0.21386031402273958,
615
+ "grad_norm": 4.15625,
616
+ "learning_rate": 4.21602787456446e-05,
617
+ "loss": 0.1456,
618
+ "step": 790
619
+ },
620
+ {
621
+ "epoch": 0.2165674066053059,
622
+ "grad_norm": 1.171875,
623
+ "learning_rate": 4.20150987224158e-05,
624
+ "loss": 0.1136,
625
+ "step": 800
626
+ },
627
+ {
628
+ "epoch": 0.2165674066053059,
629
+ "eval_loss": 0.09910526871681213,
630
+ "eval_runtime": 113.6079,
631
+ "eval_samples_per_second": 4.401,
632
+ "eval_steps_per_second": 0.282,
633
+ "step": 800
634
+ },
635
+ {
636
+ "epoch": 0.21927449918787223,
637
+ "grad_norm": 2.203125,
638
+ "learning_rate": 4.186991869918699e-05,
639
+ "loss": 0.0904,
640
+ "step": 810
641
+ },
642
+ {
643
+ "epoch": 0.22198159177043855,
644
+ "grad_norm": 2.8125,
645
+ "learning_rate": 4.172473867595819e-05,
646
+ "loss": 0.1165,
647
+ "step": 820
648
+ },
649
+ {
650
+ "epoch": 0.22468868435300487,
651
+ "grad_norm": 0.65625,
652
+ "learning_rate": 4.157955865272939e-05,
653
+ "loss": 0.1037,
654
+ "step": 830
655
+ },
656
+ {
657
+ "epoch": 0.2273957769355712,
658
+ "grad_norm": 6.03125,
659
+ "learning_rate": 4.143437862950058e-05,
660
+ "loss": 0.1116,
661
+ "step": 840
662
+ },
663
+ {
664
+ "epoch": 0.23010286951813752,
665
+ "grad_norm": 2.59375,
666
+ "learning_rate": 4.128919860627178e-05,
667
+ "loss": 0.1717,
668
+ "step": 850
669
+ },
670
+ {
671
+ "epoch": 0.23280996210070384,
672
+ "grad_norm": 2.96875,
673
+ "learning_rate": 4.114401858304297e-05,
674
+ "loss": 0.1005,
675
+ "step": 860
676
+ },
677
+ {
678
+ "epoch": 0.23551705468327017,
679
+ "grad_norm": 0.62890625,
680
+ "learning_rate": 4.099883855981417e-05,
681
+ "loss": 0.1224,
682
+ "step": 870
683
+ },
684
+ {
685
+ "epoch": 0.2382241472658365,
686
+ "grad_norm": 0.96875,
687
+ "learning_rate": 4.085365853658537e-05,
688
+ "loss": 0.0655,
689
+ "step": 880
690
+ },
691
+ {
692
+ "epoch": 0.2409312398484028,
693
+ "grad_norm": 1.34375,
694
+ "learning_rate": 4.070847851335656e-05,
695
+ "loss": 0.1179,
696
+ "step": 890
697
+ },
698
+ {
699
+ "epoch": 0.24363833243096913,
700
+ "grad_norm": 0.435546875,
701
+ "learning_rate": 4.056329849012776e-05,
702
+ "loss": 0.1007,
703
+ "step": 900
704
+ },
705
+ {
706
+ "epoch": 0.24363833243096913,
707
+ "eval_loss": 0.10046005249023438,
708
+ "eval_runtime": 109.6909,
709
+ "eval_samples_per_second": 4.558,
710
+ "eval_steps_per_second": 0.292,
711
+ "step": 900
712
+ },
713
+ {
714
+ "epoch": 0.24634542501353546,
715
+ "grad_norm": 2.03125,
716
+ "learning_rate": 4.0418118466898954e-05,
717
+ "loss": 0.1315,
718
+ "step": 910
719
+ },
720
+ {
721
+ "epoch": 0.24905251759610178,
722
+ "grad_norm": 2.125,
723
+ "learning_rate": 4.0272938443670155e-05,
724
+ "loss": 0.1409,
725
+ "step": 920
726
+ },
727
+ {
728
+ "epoch": 0.2517596101786681,
729
+ "grad_norm": 1.0078125,
730
+ "learning_rate": 4.012775842044135e-05,
731
+ "loss": 0.1195,
732
+ "step": 930
733
+ },
734
+ {
735
+ "epoch": 0.25446670276123445,
736
+ "grad_norm": 1.140625,
737
+ "learning_rate": 3.998257839721254e-05,
738
+ "loss": 0.0969,
739
+ "step": 940
740
+ },
741
+ {
742
+ "epoch": 0.25717379534380075,
743
+ "grad_norm": 0.84375,
744
+ "learning_rate": 3.983739837398374e-05,
745
+ "loss": 0.0717,
746
+ "step": 950
747
+ },
748
+ {
749
+ "epoch": 0.2598808879263671,
750
+ "grad_norm": 2.0625,
751
+ "learning_rate": 3.969221835075494e-05,
752
+ "loss": 0.0931,
753
+ "step": 960
754
+ },
755
+ {
756
+ "epoch": 0.2625879805089334,
757
+ "grad_norm": 1.1796875,
758
+ "learning_rate": 3.9547038327526136e-05,
759
+ "loss": 0.1483,
760
+ "step": 970
761
+ },
762
+ {
763
+ "epoch": 0.26529507309149974,
764
+ "grad_norm": 1.96875,
765
+ "learning_rate": 3.940185830429733e-05,
766
+ "loss": 0.1165,
767
+ "step": 980
768
+ },
769
+ {
770
+ "epoch": 0.26800216567406604,
771
+ "grad_norm": 2.703125,
772
+ "learning_rate": 3.925667828106852e-05,
773
+ "loss": 0.1092,
774
+ "step": 990
775
+ },
776
+ {
777
+ "epoch": 0.2707092582566324,
778
+ "grad_norm": 1.6171875,
779
+ "learning_rate": 3.9111498257839724e-05,
780
+ "loss": 0.0796,
781
+ "step": 1000
782
+ },
783
+ {
784
+ "epoch": 0.2707092582566324,
785
+ "eval_loss": 0.0991658866405487,
786
+ "eval_runtime": 109.5652,
787
+ "eval_samples_per_second": 4.563,
788
+ "eval_steps_per_second": 0.292,
789
+ "step": 1000
790
+ },
791
+ {
792
+ "epoch": 0.2734163508391987,
793
+ "grad_norm": 0.546875,
794
+ "learning_rate": 3.8966318234610924e-05,
795
+ "loss": 0.1199,
796
+ "step": 1010
797
+ },
798
+ {
799
+ "epoch": 0.27612344342176504,
800
+ "grad_norm": 2.59375,
801
+ "learning_rate": 3.882113821138211e-05,
802
+ "loss": 0.0766,
803
+ "step": 1020
804
+ },
805
+ {
806
+ "epoch": 0.27883053600433133,
807
+ "grad_norm": 3.421875,
808
+ "learning_rate": 3.867595818815331e-05,
809
+ "loss": 0.1308,
810
+ "step": 1030
811
+ },
812
+ {
813
+ "epoch": 0.2815376285868977,
814
+ "grad_norm": 3.71875,
815
+ "learning_rate": 3.8530778164924505e-05,
816
+ "loss": 0.1174,
817
+ "step": 1040
818
+ },
819
+ {
820
+ "epoch": 0.284244721169464,
821
+ "grad_norm": 4.3125,
822
+ "learning_rate": 3.8385598141695705e-05,
823
+ "loss": 0.1449,
824
+ "step": 1050
825
+ },
826
+ {
827
+ "epoch": 0.2869518137520303,
828
+ "grad_norm": 2.0625,
829
+ "learning_rate": 3.8240418118466905e-05,
830
+ "loss": 0.1114,
831
+ "step": 1060
832
+ },
833
+ {
834
+ "epoch": 0.2896589063345966,
835
+ "grad_norm": 2.015625,
836
+ "learning_rate": 3.809523809523809e-05,
837
+ "loss": 0.1079,
838
+ "step": 1070
839
+ },
840
+ {
841
+ "epoch": 0.292365998917163,
842
+ "grad_norm": 1.7109375,
843
+ "learning_rate": 3.795005807200929e-05,
844
+ "loss": 0.108,
845
+ "step": 1080
846
+ },
847
+ {
848
+ "epoch": 0.29507309149972927,
849
+ "grad_norm": 1.171875,
850
+ "learning_rate": 3.780487804878049e-05,
851
+ "loss": 0.1189,
852
+ "step": 1090
853
+ },
854
+ {
855
+ "epoch": 0.2977801840822956,
856
+ "grad_norm": 2.328125,
857
+ "learning_rate": 3.7659698025551686e-05,
858
+ "loss": 0.1266,
859
+ "step": 1100
860
+ },
861
+ {
862
+ "epoch": 0.2977801840822956,
863
+ "eval_loss": 0.11428254842758179,
864
+ "eval_runtime": 62.7583,
865
+ "eval_samples_per_second": 7.967,
866
+ "eval_steps_per_second": 0.51,
867
+ "step": 1100
868
+ },
869
+ {
870
+ "epoch": 0.3004872766648619,
871
+ "grad_norm": 0.90234375,
872
+ "learning_rate": 3.751451800232289e-05,
873
+ "loss": 0.1645,
874
+ "step": 1110
875
+ },
876
+ {
877
+ "epoch": 0.30319436924742826,
878
+ "grad_norm": 1.6015625,
879
+ "learning_rate": 3.7369337979094074e-05,
880
+ "loss": 0.1271,
881
+ "step": 1120
882
+ },
883
+ {
884
+ "epoch": 0.30590146182999456,
885
+ "grad_norm": 0.53515625,
886
+ "learning_rate": 3.7224157955865274e-05,
887
+ "loss": 0.0863,
888
+ "step": 1130
889
+ },
890
+ {
891
+ "epoch": 0.3086085544125609,
892
+ "grad_norm": 1.3828125,
893
+ "learning_rate": 3.7078977932636474e-05,
894
+ "loss": 0.0994,
895
+ "step": 1140
896
+ },
897
+ {
898
+ "epoch": 0.31131564699512726,
899
+ "grad_norm": 2.703125,
900
+ "learning_rate": 3.693379790940767e-05,
901
+ "loss": 0.1003,
902
+ "step": 1150
903
+ },
904
+ {
905
+ "epoch": 0.31402273957769355,
906
+ "grad_norm": 0.76953125,
907
+ "learning_rate": 3.678861788617886e-05,
908
+ "loss": 0.0944,
909
+ "step": 1160
910
+ },
911
+ {
912
+ "epoch": 0.3167298321602599,
913
+ "grad_norm": 2.546875,
914
+ "learning_rate": 3.664343786295006e-05,
915
+ "loss": 0.1752,
916
+ "step": 1170
917
+ },
918
+ {
919
+ "epoch": 0.3194369247428262,
920
+ "grad_norm": 1.5,
921
+ "learning_rate": 3.6498257839721255e-05,
922
+ "loss": 0.1714,
923
+ "step": 1180
924
+ },
925
+ {
926
+ "epoch": 0.32214401732539255,
927
+ "grad_norm": 1.1171875,
928
+ "learning_rate": 3.6353077816492456e-05,
929
+ "loss": 0.0958,
930
+ "step": 1190
931
+ },
932
+ {
933
+ "epoch": 0.32485110990795885,
934
+ "grad_norm": 3.765625,
935
+ "learning_rate": 3.620789779326365e-05,
936
+ "loss": 0.0985,
937
+ "step": 1200
938
+ },
939
+ {
940
+ "epoch": 0.32485110990795885,
941
+ "eval_loss": 0.11661399900913239,
942
+ "eval_runtime": 61.7024,
943
+ "eval_samples_per_second": 8.103,
944
+ "eval_steps_per_second": 0.519,
945
+ "step": 1200
946
+ },
947
+ {
948
+ "epoch": 0.3275582024905252,
949
+ "grad_norm": 1.0546875,
950
+ "learning_rate": 3.606271777003484e-05,
951
+ "loss": 0.0975,
952
+ "step": 1210
953
+ },
954
+ {
955
+ "epoch": 0.3302652950730915,
956
+ "grad_norm": 1.7578125,
957
+ "learning_rate": 3.591753774680604e-05,
958
+ "loss": 0.1175,
959
+ "step": 1220
960
+ },
961
+ {
962
+ "epoch": 0.33297238765565784,
963
+ "grad_norm": 2.15625,
964
+ "learning_rate": 3.577235772357724e-05,
965
+ "loss": 0.1331,
966
+ "step": 1230
967
+ },
968
+ {
969
+ "epoch": 0.33567948023822414,
970
+ "grad_norm": 1.2890625,
971
+ "learning_rate": 3.562717770034844e-05,
972
+ "loss": 0.1184,
973
+ "step": 1240
974
+ },
975
+ {
976
+ "epoch": 0.3383865728207905,
977
+ "grad_norm": 1.421875,
978
+ "learning_rate": 3.548199767711963e-05,
979
+ "loss": 0.1299,
980
+ "step": 1250
981
+ },
982
+ {
983
+ "epoch": 0.3410936654033568,
984
+ "grad_norm": 0.95703125,
985
+ "learning_rate": 3.5336817653890824e-05,
986
+ "loss": 0.1042,
987
+ "step": 1260
988
+ },
989
+ {
990
+ "epoch": 0.34380075798592313,
991
+ "grad_norm": 1.25,
992
+ "learning_rate": 3.5191637630662025e-05,
993
+ "loss": 0.0876,
994
+ "step": 1270
995
+ },
996
+ {
997
+ "epoch": 0.34650785056848943,
998
+ "grad_norm": 1.6015625,
999
+ "learning_rate": 3.504645760743322e-05,
1000
+ "loss": 0.1529,
1001
+ "step": 1280
1002
+ },
1003
+ {
1004
+ "epoch": 0.3492149431510558,
1005
+ "grad_norm": 2.296875,
1006
+ "learning_rate": 3.490127758420442e-05,
1007
+ "loss": 0.1266,
1008
+ "step": 1290
1009
+ },
1010
+ {
1011
+ "epoch": 0.3519220357336221,
1012
+ "grad_norm": 0.5703125,
1013
+ "learning_rate": 3.475609756097561e-05,
1014
+ "loss": 0.1096,
1015
+ "step": 1300
1016
+ },
1017
+ {
1018
+ "epoch": 0.3519220357336221,
1019
+ "eval_loss": 0.11386878788471222,
1020
+ "eval_runtime": 62.6792,
1021
+ "eval_samples_per_second": 7.977,
1022
+ "eval_steps_per_second": 0.511,
1023
+ "step": 1300
1024
+ },
1025
+ {
1026
+ "epoch": 0.3546291283161884,
1027
+ "grad_norm": 1.0390625,
1028
+ "learning_rate": 3.4610917537746806e-05,
1029
+ "loss": 0.1186,
1030
+ "step": 1310
1031
+ },
1032
+ {
1033
+ "epoch": 0.3573362208987547,
1034
+ "grad_norm": 2.03125,
1035
+ "learning_rate": 3.4465737514518006e-05,
1036
+ "loss": 0.1209,
1037
+ "step": 1320
1038
+ },
1039
+ {
1040
+ "epoch": 0.36004331348132107,
1041
+ "grad_norm": 2.171875,
1042
+ "learning_rate": 3.43205574912892e-05,
1043
+ "loss": 0.1562,
1044
+ "step": 1330
1045
+ },
1046
+ {
1047
+ "epoch": 0.36275040606388737,
1048
+ "grad_norm": 2.1875,
1049
+ "learning_rate": 3.41753774680604e-05,
1050
+ "loss": 0.139,
1051
+ "step": 1340
1052
+ },
1053
+ {
1054
+ "epoch": 0.3654574986464537,
1055
+ "grad_norm": 1.375,
1056
+ "learning_rate": 3.4030197444831594e-05,
1057
+ "loss": 0.117,
1058
+ "step": 1350
1059
+ },
1060
+ {
1061
+ "epoch": 0.36816459122902,
1062
+ "grad_norm": 1.0859375,
1063
+ "learning_rate": 3.388501742160279e-05,
1064
+ "loss": 0.0775,
1065
+ "step": 1360
1066
+ },
1067
+ {
1068
+ "epoch": 0.37087168381158636,
1069
+ "grad_norm": 1.1328125,
1070
+ "learning_rate": 3.373983739837399e-05,
1071
+ "loss": 0.1158,
1072
+ "step": 1370
1073
+ },
1074
+ {
1075
+ "epoch": 0.37357877639415266,
1076
+ "grad_norm": 0.890625,
1077
+ "learning_rate": 3.359465737514518e-05,
1078
+ "loss": 0.104,
1079
+ "step": 1380
1080
+ },
1081
+ {
1082
+ "epoch": 0.376285868976719,
1083
+ "grad_norm": 2.21875,
1084
+ "learning_rate": 3.344947735191638e-05,
1085
+ "loss": 0.1519,
1086
+ "step": 1390
1087
+ },
1088
+ {
1089
+ "epoch": 0.3789929615592853,
1090
+ "grad_norm": 0.91015625,
1091
+ "learning_rate": 3.3304297328687575e-05,
1092
+ "loss": 0.1034,
1093
+ "step": 1400
1094
+ },
1095
+ {
1096
+ "epoch": 0.3789929615592853,
1097
+ "eval_loss": 0.11311852931976318,
1098
+ "eval_runtime": 62.6576,
1099
+ "eval_samples_per_second": 7.98,
1100
+ "eval_steps_per_second": 0.511,
1101
+ "step": 1400
1102
+ },
1103
+ {
1104
+ "epoch": 0.38170005414185165,
1105
+ "grad_norm": 2.4375,
1106
+ "learning_rate": 3.315911730545877e-05,
1107
+ "loss": 0.1152,
1108
+ "step": 1410
1109
+ },
1110
+ {
1111
+ "epoch": 0.38440714672441795,
1112
+ "grad_norm": 2.859375,
1113
+ "learning_rate": 3.301393728222997e-05,
1114
+ "loss": 0.1335,
1115
+ "step": 1420
1116
+ },
1117
+ {
1118
+ "epoch": 0.3871142393069843,
1119
+ "grad_norm": 1.453125,
1120
+ "learning_rate": 3.286875725900116e-05,
1121
+ "loss": 0.1011,
1122
+ "step": 1430
1123
+ },
1124
+ {
1125
+ "epoch": 0.38982133188955065,
1126
+ "grad_norm": 1.3515625,
1127
+ "learning_rate": 3.2723577235772356e-05,
1128
+ "loss": 0.11,
1129
+ "step": 1440
1130
+ },
1131
+ {
1132
+ "epoch": 0.39252842447211694,
1133
+ "grad_norm": 0.5390625,
1134
+ "learning_rate": 3.2578397212543556e-05,
1135
+ "loss": 0.1462,
1136
+ "step": 1450
1137
+ },
1138
+ {
1139
+ "epoch": 0.3952355170546833,
1140
+ "grad_norm": 0.6171875,
1141
+ "learning_rate": 3.243321718931475e-05,
1142
+ "loss": 0.1175,
1143
+ "step": 1460
1144
+ },
1145
+ {
1146
+ "epoch": 0.3979426096372496,
1147
+ "grad_norm": 0.63671875,
1148
+ "learning_rate": 3.228803716608595e-05,
1149
+ "loss": 0.0832,
1150
+ "step": 1470
1151
+ },
1152
+ {
1153
+ "epoch": 0.40064970221981594,
1154
+ "grad_norm": 1.6484375,
1155
+ "learning_rate": 3.2142857142857144e-05,
1156
+ "loss": 0.1224,
1157
+ "step": 1480
1158
+ },
1159
+ {
1160
+ "epoch": 0.40335679480238223,
1161
+ "grad_norm": 0.9296875,
1162
+ "learning_rate": 3.199767711962834e-05,
1163
+ "loss": 0.118,
1164
+ "step": 1490
1165
+ },
1166
+ {
1167
+ "epoch": 0.4060638873849486,
1168
+ "grad_norm": 1.4296875,
1169
+ "learning_rate": 3.185249709639954e-05,
1170
+ "loss": 0.1143,
1171
+ "step": 1500
1172
+ },
1173
+ {
1174
+ "epoch": 0.4060638873849486,
1175
+ "eval_loss": 0.11030779778957367,
1176
+ "eval_runtime": 62.7843,
1177
+ "eval_samples_per_second": 7.964,
1178
+ "eval_steps_per_second": 0.51,
1179
+ "step": 1500
1180
+ },
1181
+ {
1182
+ "epoch": 0.4087709799675149,
1183
+ "grad_norm": 1.109375,
1184
+ "learning_rate": 3.170731707317073e-05,
1185
+ "loss": 0.0953,
1186
+ "step": 1510
1187
+ },
1188
+ {
1189
+ "epoch": 0.41147807255008123,
1190
+ "grad_norm": 1.9609375,
1191
+ "learning_rate": 3.156213704994193e-05,
1192
+ "loss": 0.12,
1193
+ "step": 1520
1194
+ },
1195
+ {
1196
+ "epoch": 0.4141851651326475,
1197
+ "grad_norm": 1.1640625,
1198
+ "learning_rate": 3.1416957026713125e-05,
1199
+ "loss": 0.1243,
1200
+ "step": 1530
1201
+ },
1202
+ {
1203
+ "epoch": 0.4168922577152139,
1204
+ "grad_norm": 1.9140625,
1205
+ "learning_rate": 3.127177700348432e-05,
1206
+ "loss": 0.1008,
1207
+ "step": 1540
1208
+ },
1209
+ {
1210
+ "epoch": 0.41959935029778017,
1211
+ "grad_norm": 2.015625,
1212
+ "learning_rate": 3.112659698025552e-05,
1213
+ "loss": 0.1435,
1214
+ "step": 1550
1215
+ },
1216
+ {
1217
+ "epoch": 0.4223064428803465,
1218
+ "grad_norm": 1.3046875,
1219
+ "learning_rate": 3.098141695702671e-05,
1220
+ "loss": 0.0719,
1221
+ "step": 1560
1222
+ },
1223
+ {
1224
+ "epoch": 0.4250135354629128,
1225
+ "grad_norm": 0.72265625,
1226
+ "learning_rate": 3.083623693379791e-05,
1227
+ "loss": 0.1168,
1228
+ "step": 1570
1229
+ },
1230
+ {
1231
+ "epoch": 0.42772062804547917,
1232
+ "grad_norm": 2.859375,
1233
+ "learning_rate": 3.069105691056911e-05,
1234
+ "loss": 0.1393,
1235
+ "step": 1580
1236
+ },
1237
+ {
1238
+ "epoch": 0.43042772062804546,
1239
+ "grad_norm": 1.5078125,
1240
+ "learning_rate": 3.05458768873403e-05,
1241
+ "loss": 0.1215,
1242
+ "step": 1590
1243
+ },
1244
+ {
1245
+ "epoch": 0.4331348132106118,
1246
+ "grad_norm": 1.0625,
1247
+ "learning_rate": 3.04006968641115e-05,
1248
+ "loss": 0.1051,
1249
+ "step": 1600
1250
+ },
1251
+ {
1252
+ "epoch": 0.4331348132106118,
1253
+ "eval_loss": 0.11309642344713211,
1254
+ "eval_runtime": 62.3543,
1255
+ "eval_samples_per_second": 8.019,
1256
+ "eval_steps_per_second": 0.513,
1257
+ "step": 1600
1258
+ },
1259
+ {
1260
+ "epoch": 0.4358419057931781,
1261
+ "grad_norm": 1.0390625,
1262
+ "learning_rate": 3.0255516840882698e-05,
1263
+ "loss": 0.0818,
1264
+ "step": 1610
1265
+ },
1266
+ {
1267
+ "epoch": 0.43854899837574446,
1268
+ "grad_norm": 0.74609375,
1269
+ "learning_rate": 3.0110336817653895e-05,
1270
+ "loss": 0.1048,
1271
+ "step": 1620
1272
+ },
1273
+ {
1274
+ "epoch": 0.44125609095831075,
1275
+ "grad_norm": 1.359375,
1276
+ "learning_rate": 2.9965156794425088e-05,
1277
+ "loss": 0.0984,
1278
+ "step": 1630
1279
+ },
1280
+ {
1281
+ "epoch": 0.4439631835408771,
1282
+ "grad_norm": 0.9453125,
1283
+ "learning_rate": 2.9819976771196285e-05,
1284
+ "loss": 0.0861,
1285
+ "step": 1640
1286
+ },
1287
+ {
1288
+ "epoch": 0.4466702761234434,
1289
+ "grad_norm": 1.6015625,
1290
+ "learning_rate": 2.9674796747967482e-05,
1291
+ "loss": 0.1451,
1292
+ "step": 1650
1293
+ },
1294
+ {
1295
+ "epoch": 0.44937736870600975,
1296
+ "grad_norm": 1.296875,
1297
+ "learning_rate": 2.952961672473868e-05,
1298
+ "loss": 0.1273,
1299
+ "step": 1660
1300
+ },
1301
+ {
1302
+ "epoch": 0.45208446128857604,
1303
+ "grad_norm": 1.359375,
1304
+ "learning_rate": 2.9384436701509873e-05,
1305
+ "loss": 0.1287,
1306
+ "step": 1670
1307
+ },
1308
+ {
1309
+ "epoch": 0.4547915538711424,
1310
+ "grad_norm": 2.3125,
1311
+ "learning_rate": 2.923925667828107e-05,
1312
+ "loss": 0.1465,
1313
+ "step": 1680
1314
+ },
1315
+ {
1316
+ "epoch": 0.4574986464537087,
1317
+ "grad_norm": 0.58984375,
1318
+ "learning_rate": 2.9094076655052267e-05,
1319
+ "loss": 0.1009,
1320
+ "step": 1690
1321
+ },
1322
+ {
1323
+ "epoch": 0.46020573903627504,
1324
+ "grad_norm": 0.5390625,
1325
+ "learning_rate": 2.8948896631823464e-05,
1326
+ "loss": 0.0867,
1327
+ "step": 1700
1328
+ },
1329
+ {
1330
+ "epoch": 0.46020573903627504,
1331
+ "eval_loss": 0.10628359764814377,
1332
+ "eval_runtime": 62.0852,
1333
+ "eval_samples_per_second": 8.053,
1334
+ "eval_steps_per_second": 0.515,
1335
+ "step": 1700
1336
+ },
1337
+ {
1338
+ "epoch": 0.4629128316188414,
1339
+ "grad_norm": 2.28125,
1340
+ "learning_rate": 2.880371660859466e-05,
1341
+ "loss": 0.1038,
1342
+ "step": 1710
1343
+ },
1344
+ {
1345
+ "epoch": 0.4656199242014077,
1346
+ "grad_norm": 0.72265625,
1347
+ "learning_rate": 2.8658536585365854e-05,
1348
+ "loss": 0.1063,
1349
+ "step": 1720
1350
+ },
1351
+ {
1352
+ "epoch": 0.46832701678397404,
1353
+ "grad_norm": 2.1875,
1354
+ "learning_rate": 2.851335656213705e-05,
1355
+ "loss": 0.1509,
1356
+ "step": 1730
1357
+ },
1358
+ {
1359
+ "epoch": 0.47103410936654033,
1360
+ "grad_norm": 0.56640625,
1361
+ "learning_rate": 2.8368176538908248e-05,
1362
+ "loss": 0.1043,
1363
+ "step": 1740
1364
+ },
1365
+ {
1366
+ "epoch": 0.4737412019491067,
1367
+ "grad_norm": 1.125,
1368
+ "learning_rate": 2.8222996515679445e-05,
1369
+ "loss": 0.1032,
1370
+ "step": 1750
1371
+ },
1372
+ {
1373
+ "epoch": 0.476448294531673,
1374
+ "grad_norm": 0.51171875,
1375
+ "learning_rate": 2.8077816492450642e-05,
1376
+ "loss": 0.0817,
1377
+ "step": 1760
1378
+ },
1379
+ {
1380
+ "epoch": 0.47915538711423933,
1381
+ "grad_norm": 2.09375,
1382
+ "learning_rate": 2.7932636469221835e-05,
1383
+ "loss": 0.1285,
1384
+ "step": 1770
1385
+ },
1386
+ {
1387
+ "epoch": 0.4818624796968056,
1388
+ "grad_norm": 0.78515625,
1389
+ "learning_rate": 2.7787456445993032e-05,
1390
+ "loss": 0.1446,
1391
+ "step": 1780
1392
+ },
1393
+ {
1394
+ "epoch": 0.484569572279372,
1395
+ "grad_norm": 1.265625,
1396
+ "learning_rate": 2.764227642276423e-05,
1397
+ "loss": 0.1086,
1398
+ "step": 1790
1399
+ },
1400
+ {
1401
+ "epoch": 0.48727666486193827,
1402
+ "grad_norm": 1.8046875,
1403
+ "learning_rate": 2.7497096399535426e-05,
1404
+ "loss": 0.1001,
1405
+ "step": 1800
1406
+ },
1407
+ {
1408
+ "epoch": 0.48727666486193827,
1409
+ "eval_loss": 0.10519789159297943,
1410
+ "eval_runtime": 64.2198,
1411
+ "eval_samples_per_second": 7.786,
1412
+ "eval_steps_per_second": 0.498,
1413
+ "step": 1800
1414
+ },
1415
+ {
1416
+ "epoch": 0.4899837574445046,
1417
+ "grad_norm": 1.9296875,
1418
+ "learning_rate": 2.735191637630662e-05,
1419
+ "loss": 0.087,
1420
+ "step": 1810
1421
+ },
1422
+ {
1423
+ "epoch": 0.4926908500270709,
1424
+ "grad_norm": 1.15625,
1425
+ "learning_rate": 2.7206736353077817e-05,
1426
+ "loss": 0.1236,
1427
+ "step": 1820
1428
+ },
1429
+ {
1430
+ "epoch": 0.49539794260963727,
1431
+ "grad_norm": 1.1875,
1432
+ "learning_rate": 2.7061556329849014e-05,
1433
+ "loss": 0.0777,
1434
+ "step": 1830
1435
+ },
1436
+ {
1437
+ "epoch": 0.49810503519220356,
1438
+ "grad_norm": 1.1640625,
1439
+ "learning_rate": 2.691637630662021e-05,
1440
+ "loss": 0.0987,
1441
+ "step": 1840
1442
+ },
1443
+ {
1444
+ "epoch": 0.5008121277747699,
1445
+ "grad_norm": 0.96484375,
1446
+ "learning_rate": 2.6771196283391408e-05,
1447
+ "loss": 0.1226,
1448
+ "step": 1850
1449
+ },
1450
+ {
1451
+ "epoch": 0.5035192203573362,
1452
+ "grad_norm": 1.3828125,
1453
+ "learning_rate": 2.66260162601626e-05,
1454
+ "loss": 0.1295,
1455
+ "step": 1860
1456
+ },
1457
+ {
1458
+ "epoch": 0.5062263129399025,
1459
+ "grad_norm": 0.60546875,
1460
+ "learning_rate": 2.6480836236933798e-05,
1461
+ "loss": 0.0666,
1462
+ "step": 1870
1463
+ },
1464
+ {
1465
+ "epoch": 0.5089334055224689,
1466
+ "grad_norm": 2.46875,
1467
+ "learning_rate": 2.6335656213704995e-05,
1468
+ "loss": 0.0885,
1469
+ "step": 1880
1470
+ },
1471
+ {
1472
+ "epoch": 0.5116404981050352,
1473
+ "grad_norm": 2.5,
1474
+ "learning_rate": 2.6190476190476192e-05,
1475
+ "loss": 0.075,
1476
+ "step": 1890
1477
+ },
1478
+ {
1479
+ "epoch": 0.5143475906876015,
1480
+ "grad_norm": 0.6875,
1481
+ "learning_rate": 2.604529616724739e-05,
1482
+ "loss": 0.0907,
1483
+ "step": 1900
1484
+ },
1485
+ {
1486
+ "epoch": 0.5143475906876015,
1487
+ "eval_loss": 0.1059199795126915,
1488
+ "eval_runtime": 62.4159,
1489
+ "eval_samples_per_second": 8.011,
1490
+ "eval_steps_per_second": 0.513,
1491
+ "step": 1900
1492
+ },
1493
+ {
1494
+ "epoch": 0.5170546832701678,
1495
+ "grad_norm": 1.1875,
1496
+ "learning_rate": 2.5900116144018583e-05,
1497
+ "loss": 0.1199,
1498
+ "step": 1910
1499
+ },
1500
+ {
1501
+ "epoch": 0.5197617758527342,
1502
+ "grad_norm": 0.7265625,
1503
+ "learning_rate": 2.575493612078978e-05,
1504
+ "loss": 0.112,
1505
+ "step": 1920
1506
+ },
1507
+ {
1508
+ "epoch": 0.5224688684353005,
1509
+ "grad_norm": 3.078125,
1510
+ "learning_rate": 2.5609756097560977e-05,
1511
+ "loss": 0.1126,
1512
+ "step": 1930
1513
+ },
1514
+ {
1515
+ "epoch": 0.5251759610178668,
1516
+ "grad_norm": 2.109375,
1517
+ "learning_rate": 2.5464576074332174e-05,
1518
+ "loss": 0.1203,
1519
+ "step": 1940
1520
+ },
1521
+ {
1522
+ "epoch": 0.5278830536004331,
1523
+ "grad_norm": 0.71875,
1524
+ "learning_rate": 2.5319396051103367e-05,
1525
+ "loss": 0.1226,
1526
+ "step": 1950
1527
+ },
1528
+ {
1529
+ "epoch": 0.5305901461829995,
1530
+ "grad_norm": 0.51171875,
1531
+ "learning_rate": 2.5174216027874564e-05,
1532
+ "loss": 0.0856,
1533
+ "step": 1960
1534
+ },
1535
+ {
1536
+ "epoch": 0.5332972387655658,
1537
+ "grad_norm": 2.4375,
1538
+ "learning_rate": 2.502903600464576e-05,
1539
+ "loss": 0.112,
1540
+ "step": 1970
1541
+ },
1542
+ {
1543
+ "epoch": 0.5360043313481321,
1544
+ "grad_norm": 0.62890625,
1545
+ "learning_rate": 2.4883855981416958e-05,
1546
+ "loss": 0.1082,
1547
+ "step": 1980
1548
+ },
1549
+ {
1550
+ "epoch": 0.5387114239306985,
1551
+ "grad_norm": 0.765625,
1552
+ "learning_rate": 2.4738675958188155e-05,
1553
+ "loss": 0.1261,
1554
+ "step": 1990
1555
+ },
1556
+ {
1557
+ "epoch": 0.5414185165132648,
1558
+ "grad_norm": 2.046875,
1559
+ "learning_rate": 2.4593495934959352e-05,
1560
+ "loss": 0.1182,
1561
+ "step": 2000
1562
+ },
1563
+ {
1564
+ "epoch": 0.5414185165132648,
1565
+ "eval_loss": 0.10393251478672028,
1566
+ "eval_runtime": 62.4399,
1567
+ "eval_samples_per_second": 8.008,
1568
+ "eval_steps_per_second": 0.512,
1569
+ "step": 2000
1570
+ },
1571
+ {
1572
+ "epoch": 0.5441256090958311,
1573
+ "grad_norm": 0.9921875,
1574
+ "learning_rate": 2.4448315911730546e-05,
1575
+ "loss": 0.0977,
1576
+ "step": 2010
1577
+ },
1578
+ {
1579
+ "epoch": 0.5468327016783974,
1580
+ "grad_norm": 1.640625,
1581
+ "learning_rate": 2.4303135888501743e-05,
1582
+ "loss": 0.0772,
1583
+ "step": 2020
1584
+ },
1585
+ {
1586
+ "epoch": 0.5495397942609638,
1587
+ "grad_norm": 1.9921875,
1588
+ "learning_rate": 2.415795586527294e-05,
1589
+ "loss": 0.1043,
1590
+ "step": 2030
1591
+ },
1592
+ {
1593
+ "epoch": 0.5522468868435301,
1594
+ "grad_norm": 0.458984375,
1595
+ "learning_rate": 2.4012775842044136e-05,
1596
+ "loss": 0.083,
1597
+ "step": 2040
1598
+ },
1599
+ {
1600
+ "epoch": 0.5549539794260964,
1601
+ "grad_norm": 1.1796875,
1602
+ "learning_rate": 2.3867595818815333e-05,
1603
+ "loss": 0.0954,
1604
+ "step": 2050
1605
+ },
1606
+ {
1607
+ "epoch": 0.5576610720086627,
1608
+ "grad_norm": 0.90625,
1609
+ "learning_rate": 2.3722415795586527e-05,
1610
+ "loss": 0.0861,
1611
+ "step": 2060
1612
+ },
1613
+ {
1614
+ "epoch": 0.5603681645912291,
1615
+ "grad_norm": 0.5625,
1616
+ "learning_rate": 2.3577235772357724e-05,
1617
+ "loss": 0.109,
1618
+ "step": 2070
1619
+ },
1620
+ {
1621
+ "epoch": 0.5630752571737954,
1622
+ "grad_norm": 0.6640625,
1623
+ "learning_rate": 2.343205574912892e-05,
1624
+ "loss": 0.0902,
1625
+ "step": 2080
1626
+ },
1627
+ {
1628
+ "epoch": 0.5657823497563617,
1629
+ "grad_norm": 1.421875,
1630
+ "learning_rate": 2.3286875725900118e-05,
1631
+ "loss": 0.1021,
1632
+ "step": 2090
1633
+ },
1634
+ {
1635
+ "epoch": 0.568489442338928,
1636
+ "grad_norm": 1.5546875,
1637
+ "learning_rate": 2.314169570267131e-05,
1638
+ "loss": 0.0855,
1639
+ "step": 2100
1640
+ },
1641
+ {
1642
+ "epoch": 0.568489442338928,
1643
+ "eval_loss": 0.1053832545876503,
1644
+ "eval_runtime": 62.817,
1645
+ "eval_samples_per_second": 7.96,
1646
+ "eval_steps_per_second": 0.509,
1647
+ "step": 2100
1648
+ },
1649
+ {
1650
+ "epoch": 0.5711965349214944,
1651
+ "grad_norm": 0.828125,
1652
+ "learning_rate": 2.299651567944251e-05,
1653
+ "loss": 0.0938,
1654
+ "step": 2110
1655
+ },
1656
+ {
1657
+ "epoch": 0.5739036275040607,
1658
+ "grad_norm": 0.953125,
1659
+ "learning_rate": 2.285133565621371e-05,
1660
+ "loss": 0.064,
1661
+ "step": 2120
1662
+ },
1663
+ {
1664
+ "epoch": 0.576610720086627,
1665
+ "grad_norm": 1.609375,
1666
+ "learning_rate": 2.2706155632984902e-05,
1667
+ "loss": 0.0987,
1668
+ "step": 2130
1669
+ },
1670
+ {
1671
+ "epoch": 0.5793178126691932,
1672
+ "grad_norm": 1.6484375,
1673
+ "learning_rate": 2.25609756097561e-05,
1674
+ "loss": 0.0876,
1675
+ "step": 2140
1676
+ },
1677
+ {
1678
+ "epoch": 0.5820249052517596,
1679
+ "grad_norm": 0.953125,
1680
+ "learning_rate": 2.2415795586527293e-05,
1681
+ "loss": 0.1171,
1682
+ "step": 2150
1683
+ },
1684
+ {
1685
+ "epoch": 0.584731997834326,
1686
+ "grad_norm": 2.328125,
1687
+ "learning_rate": 2.227061556329849e-05,
1688
+ "loss": 0.0901,
1689
+ "step": 2160
1690
+ },
1691
+ {
1692
+ "epoch": 0.5874390904168922,
1693
+ "grad_norm": 0.78125,
1694
+ "learning_rate": 2.2125435540069687e-05,
1695
+ "loss": 0.1097,
1696
+ "step": 2170
1697
+ },
1698
+ {
1699
+ "epoch": 0.5901461829994585,
1700
+ "grad_norm": 0.84375,
1701
+ "learning_rate": 2.1980255516840884e-05,
1702
+ "loss": 0.0678,
1703
+ "step": 2180
1704
+ },
1705
+ {
1706
+ "epoch": 0.5928532755820249,
1707
+ "grad_norm": 1.515625,
1708
+ "learning_rate": 2.183507549361208e-05,
1709
+ "loss": 0.1216,
1710
+ "step": 2190
1711
+ },
1712
+ {
1713
+ "epoch": 0.5955603681645912,
1714
+ "grad_norm": 0.94140625,
1715
+ "learning_rate": 2.1689895470383274e-05,
1716
+ "loss": 0.0803,
1717
+ "step": 2200
1718
+ },
1719
+ {
1720
+ "epoch": 0.5955603681645912,
1721
+ "eval_loss": 0.1051289513707161,
1722
+ "eval_runtime": 62.5369,
1723
+ "eval_samples_per_second": 7.995,
1724
+ "eval_steps_per_second": 0.512,
1725
+ "step": 2200
1726
+ },
1727
+ {
1728
+ "epoch": 0.5982674607471575,
1729
+ "grad_norm": 1.0625,
1730
+ "learning_rate": 2.1544715447154475e-05,
1731
+ "loss": 0.1353,
1732
+ "step": 2210
1733
+ },
1734
+ {
1735
+ "epoch": 0.6009745533297238,
1736
+ "grad_norm": 0.77734375,
1737
+ "learning_rate": 2.1399535423925668e-05,
1738
+ "loss": 0.0772,
1739
+ "step": 2220
1740
+ },
1741
+ {
1742
+ "epoch": 0.6036816459122902,
1743
+ "grad_norm": 2.90625,
1744
+ "learning_rate": 2.1254355400696865e-05,
1745
+ "loss": 0.1301,
1746
+ "step": 2230
1747
+ },
1748
+ {
1749
+ "epoch": 0.6063887384948565,
1750
+ "grad_norm": 0.443359375,
1751
+ "learning_rate": 2.110917537746806e-05,
1752
+ "loss": 0.1308,
1753
+ "step": 2240
1754
+ },
1755
+ {
1756
+ "epoch": 0.6090958310774228,
1757
+ "grad_norm": 0.75,
1758
+ "learning_rate": 2.096399535423926e-05,
1759
+ "loss": 0.0804,
1760
+ "step": 2250
1761
+ },
1762
+ {
1763
+ "epoch": 0.6118029236599891,
1764
+ "grad_norm": 1.1953125,
1765
+ "learning_rate": 2.0818815331010456e-05,
1766
+ "loss": 0.0908,
1767
+ "step": 2260
1768
+ },
1769
+ {
1770
+ "epoch": 0.6145100162425555,
1771
+ "grad_norm": 2.15625,
1772
+ "learning_rate": 2.067363530778165e-05,
1773
+ "loss": 0.1008,
1774
+ "step": 2270
1775
+ },
1776
+ {
1777
+ "epoch": 0.6172171088251218,
1778
+ "grad_norm": 1.4296875,
1779
+ "learning_rate": 2.0528455284552847e-05,
1780
+ "loss": 0.107,
1781
+ "step": 2280
1782
+ },
1783
+ {
1784
+ "epoch": 0.6199242014076881,
1785
+ "grad_norm": 2.625,
1786
+ "learning_rate": 2.038327526132404e-05,
1787
+ "loss": 0.1058,
1788
+ "step": 2290
1789
+ },
1790
+ {
1791
+ "epoch": 0.6226312939902545,
1792
+ "grad_norm": 1.265625,
1793
+ "learning_rate": 2.023809523809524e-05,
1794
+ "loss": 0.1034,
1795
+ "step": 2300
1796
+ },
1797
+ {
1798
+ "epoch": 0.6226312939902545,
1799
+ "eval_loss": 0.10145323723554611,
1800
+ "eval_runtime": 63.2925,
1801
+ "eval_samples_per_second": 7.9,
1802
+ "eval_steps_per_second": 0.506,
1803
+ "step": 2300
1804
+ },
1805
+ {
1806
+ "epoch": 0.6253383865728208,
1807
+ "grad_norm": 1.359375,
1808
+ "learning_rate": 2.0092915214866434e-05,
1809
+ "loss": 0.0867,
1810
+ "step": 2310
1811
+ },
1812
+ {
1813
+ "epoch": 0.6280454791553871,
1814
+ "grad_norm": 2.34375,
1815
+ "learning_rate": 1.994773519163763e-05,
1816
+ "loss": 0.1246,
1817
+ "step": 2320
1818
+ },
1819
+ {
1820
+ "epoch": 0.6307525717379534,
1821
+ "grad_norm": 2.6875,
1822
+ "learning_rate": 1.9802555168408828e-05,
1823
+ "loss": 0.0807,
1824
+ "step": 2330
1825
+ },
1826
+ {
1827
+ "epoch": 0.6334596643205198,
1828
+ "grad_norm": 1.4375,
1829
+ "learning_rate": 1.9657375145180025e-05,
1830
+ "loss": 0.1042,
1831
+ "step": 2340
1832
+ },
1833
+ {
1834
+ "epoch": 0.6361667569030861,
1835
+ "grad_norm": 0.470703125,
1836
+ "learning_rate": 1.9512195121951222e-05,
1837
+ "loss": 0.0838,
1838
+ "step": 2350
1839
+ },
1840
+ {
1841
+ "epoch": 0.6388738494856524,
1842
+ "grad_norm": 2.375,
1843
+ "learning_rate": 1.9367015098722416e-05,
1844
+ "loss": 0.0977,
1845
+ "step": 2360
1846
+ },
1847
+ {
1848
+ "epoch": 0.6415809420682187,
1849
+ "grad_norm": 0.49609375,
1850
+ "learning_rate": 1.9221835075493612e-05,
1851
+ "loss": 0.108,
1852
+ "step": 2370
1853
+ },
1854
+ {
1855
+ "epoch": 0.6442880346507851,
1856
+ "grad_norm": 3.484375,
1857
+ "learning_rate": 1.907665505226481e-05,
1858
+ "loss": 0.1267,
1859
+ "step": 2380
1860
+ },
1861
+ {
1862
+ "epoch": 0.6469951272333514,
1863
+ "grad_norm": 0.5234375,
1864
+ "learning_rate": 1.8931475029036006e-05,
1865
+ "loss": 0.1216,
1866
+ "step": 2390
1867
+ },
1868
+ {
1869
+ "epoch": 0.6497022198159177,
1870
+ "grad_norm": 1.15625,
1871
+ "learning_rate": 1.8786295005807203e-05,
1872
+ "loss": 0.1038,
1873
+ "step": 2400
1874
+ },
1875
+ {
1876
+ "epoch": 0.6497022198159177,
1877
+ "eval_loss": 0.09887947887182236,
1878
+ "eval_runtime": 62.4522,
1879
+ "eval_samples_per_second": 8.006,
1880
+ "eval_steps_per_second": 0.512,
1881
+ "step": 2400
1882
+ },
1883
+ {
1884
+ "epoch": 0.652409312398484,
1885
+ "grad_norm": 2.453125,
1886
+ "learning_rate": 1.8641114982578397e-05,
1887
+ "loss": 0.1222,
1888
+ "step": 2410
1889
+ },
1890
+ {
1891
+ "epoch": 0.6551164049810504,
1892
+ "grad_norm": 1.7578125,
1893
+ "learning_rate": 1.8495934959349594e-05,
1894
+ "loss": 0.1178,
1895
+ "step": 2420
1896
+ },
1897
+ {
1898
+ "epoch": 0.6578234975636167,
1899
+ "grad_norm": 0.328125,
1900
+ "learning_rate": 1.835075493612079e-05,
1901
+ "loss": 0.0962,
1902
+ "step": 2430
1903
+ },
1904
+ {
1905
+ "epoch": 0.660530590146183,
1906
+ "grad_norm": 1.1484375,
1907
+ "learning_rate": 1.8205574912891988e-05,
1908
+ "loss": 0.0779,
1909
+ "step": 2440
1910
+ },
1911
+ {
1912
+ "epoch": 0.6632376827287493,
1913
+ "grad_norm": 1.0234375,
1914
+ "learning_rate": 1.806039488966318e-05,
1915
+ "loss": 0.1117,
1916
+ "step": 2450
1917
+ },
1918
+ {
1919
+ "epoch": 0.6659447753113157,
1920
+ "grad_norm": 1.1875,
1921
+ "learning_rate": 1.791521486643438e-05,
1922
+ "loss": 0.0766,
1923
+ "step": 2460
1924
+ },
1925
+ {
1926
+ "epoch": 0.668651867893882,
1927
+ "grad_norm": 0.98828125,
1928
+ "learning_rate": 1.7770034843205575e-05,
1929
+ "loss": 0.101,
1930
+ "step": 2470
1931
+ },
1932
+ {
1933
+ "epoch": 0.6713589604764483,
1934
+ "grad_norm": 0.337890625,
1935
+ "learning_rate": 1.7624854819976772e-05,
1936
+ "loss": 0.0907,
1937
+ "step": 2480
1938
+ },
1939
+ {
1940
+ "epoch": 0.6740660530590146,
1941
+ "grad_norm": 1.8515625,
1942
+ "learning_rate": 1.747967479674797e-05,
1943
+ "loss": 0.1209,
1944
+ "step": 2490
1945
+ },
1946
+ {
1947
+ "epoch": 0.676773145641581,
1948
+ "grad_norm": 1.71875,
1949
+ "learning_rate": 1.7334494773519163e-05,
1950
+ "loss": 0.0868,
1951
+ "step": 2500
1952
+ },
1953
+ {
1954
+ "epoch": 0.676773145641581,
1955
+ "eval_loss": 0.09873838722705841,
1956
+ "eval_runtime": 62.714,
1957
+ "eval_samples_per_second": 7.973,
1958
+ "eval_steps_per_second": 0.51,
1959
+ "step": 2500
1960
+ },
1961
+ {
1962
+ "epoch": 0.6794802382241473,
1963
+ "grad_norm": 1.328125,
1964
+ "learning_rate": 1.718931475029036e-05,
1965
+ "loss": 0.1117,
1966
+ "step": 2510
1967
+ },
1968
+ {
1969
+ "epoch": 0.6821873308067136,
1970
+ "grad_norm": 1.1171875,
1971
+ "learning_rate": 1.7044134727061557e-05,
1972
+ "loss": 0.1111,
1973
+ "step": 2520
1974
+ },
1975
+ {
1976
+ "epoch": 0.6848944233892799,
1977
+ "grad_norm": 1.9609375,
1978
+ "learning_rate": 1.6898954703832754e-05,
1979
+ "loss": 0.1119,
1980
+ "step": 2530
1981
+ },
1982
+ {
1983
+ "epoch": 0.6876015159718463,
1984
+ "grad_norm": 0.2734375,
1985
+ "learning_rate": 1.675377468060395e-05,
1986
+ "loss": 0.0696,
1987
+ "step": 2540
1988
+ },
1989
+ {
1990
+ "epoch": 0.6903086085544126,
1991
+ "grad_norm": 1.3671875,
1992
+ "learning_rate": 1.6608594657375144e-05,
1993
+ "loss": 0.1157,
1994
+ "step": 2550
1995
+ },
1996
+ {
1997
+ "epoch": 0.6930157011369789,
1998
+ "grad_norm": 0.59375,
1999
+ "learning_rate": 1.6463414634146345e-05,
2000
+ "loss": 0.0811,
2001
+ "step": 2560
2002
+ },
2003
+ {
2004
+ "epoch": 0.6957227937195453,
2005
+ "grad_norm": 0.384765625,
2006
+ "learning_rate": 1.6318234610917538e-05,
2007
+ "loss": 0.0931,
2008
+ "step": 2570
2009
+ },
2010
+ {
2011
+ "epoch": 0.6984298863021116,
2012
+ "grad_norm": 1.8125,
2013
+ "learning_rate": 1.6173054587688735e-05,
2014
+ "loss": 0.0722,
2015
+ "step": 2580
2016
+ },
2017
+ {
2018
+ "epoch": 0.7011369788846779,
2019
+ "grad_norm": 1.7578125,
2020
+ "learning_rate": 1.602787456445993e-05,
2021
+ "loss": 0.0827,
2022
+ "step": 2590
2023
+ },
2024
+ {
2025
+ "epoch": 0.7038440714672441,
2026
+ "grad_norm": 1.1015625,
2027
+ "learning_rate": 1.5882694541231126e-05,
2028
+ "loss": 0.0838,
2029
+ "step": 2600
2030
+ },
2031
+ {
2032
+ "epoch": 0.7038440714672441,
2033
+ "eval_loss": 0.10134698450565338,
2034
+ "eval_runtime": 62.3738,
2035
+ "eval_samples_per_second": 8.016,
2036
+ "eval_steps_per_second": 0.513,
2037
+ "step": 2600
2038
+ },
2039
+ {
2040
+ "epoch": 0.7065511640498106,
2041
+ "grad_norm": 0.2578125,
2042
+ "learning_rate": 1.5737514518002326e-05,
2043
+ "loss": 0.0966,
2044
+ "step": 2610
2045
+ },
2046
+ {
2047
+ "epoch": 0.7092582566323768,
2048
+ "grad_norm": 1.3046875,
2049
+ "learning_rate": 1.559233449477352e-05,
2050
+ "loss": 0.0998,
2051
+ "step": 2620
2052
+ },
2053
+ {
2054
+ "epoch": 0.7119653492149431,
2055
+ "grad_norm": 2.3125,
2056
+ "learning_rate": 1.5447154471544717e-05,
2057
+ "loss": 0.1566,
2058
+ "step": 2630
2059
+ },
2060
+ {
2061
+ "epoch": 0.7146724417975094,
2062
+ "grad_norm": 1.90625,
2063
+ "learning_rate": 1.530197444831591e-05,
2064
+ "loss": 0.1078,
2065
+ "step": 2640
2066
+ },
2067
+ {
2068
+ "epoch": 0.7173795343800758,
2069
+ "grad_norm": 1.703125,
2070
+ "learning_rate": 1.5156794425087109e-05,
2071
+ "loss": 0.1152,
2072
+ "step": 2650
2073
+ },
2074
+ {
2075
+ "epoch": 0.7200866269626421,
2076
+ "grad_norm": 1.40625,
2077
+ "learning_rate": 1.5011614401858304e-05,
2078
+ "loss": 0.0969,
2079
+ "step": 2660
2080
+ },
2081
+ {
2082
+ "epoch": 0.7227937195452084,
2083
+ "grad_norm": 1.3671875,
2084
+ "learning_rate": 1.4866434378629501e-05,
2085
+ "loss": 0.111,
2086
+ "step": 2670
2087
+ },
2088
+ {
2089
+ "epoch": 0.7255008121277747,
2090
+ "grad_norm": 3.765625,
2091
+ "learning_rate": 1.4721254355400698e-05,
2092
+ "loss": 0.1255,
2093
+ "step": 2680
2094
+ },
2095
+ {
2096
+ "epoch": 0.7282079047103411,
2097
+ "grad_norm": 2.515625,
2098
+ "learning_rate": 1.4576074332171893e-05,
2099
+ "loss": 0.1017,
2100
+ "step": 2690
2101
+ },
2102
+ {
2103
+ "epoch": 0.7309149972929074,
2104
+ "grad_norm": 0.38671875,
2105
+ "learning_rate": 1.443089430894309e-05,
2106
+ "loss": 0.0767,
2107
+ "step": 2700
2108
+ },
2109
+ {
2110
+ "epoch": 0.7309149972929074,
2111
+ "eval_loss": 0.0986585021018982,
2112
+ "eval_runtime": 62.4165,
2113
+ "eval_samples_per_second": 8.011,
2114
+ "eval_steps_per_second": 0.513,
2115
+ "step": 2700
2116
+ },
2117
+ {
2118
+ "epoch": 0.7336220898754737,
2119
+ "grad_norm": 1.609375,
2120
+ "learning_rate": 1.4285714285714285e-05,
2121
+ "loss": 0.1086,
2122
+ "step": 2710
2123
+ },
2124
+ {
2125
+ "epoch": 0.73632918245804,
2126
+ "grad_norm": 0.7734375,
2127
+ "learning_rate": 1.4140534262485482e-05,
2128
+ "loss": 0.1022,
2129
+ "step": 2720
2130
+ },
2131
+ {
2132
+ "epoch": 0.7390362750406064,
2133
+ "grad_norm": 1.2578125,
2134
+ "learning_rate": 1.3995354239256678e-05,
2135
+ "loss": 0.0834,
2136
+ "step": 2730
2137
+ },
2138
+ {
2139
+ "epoch": 0.7417433676231727,
2140
+ "grad_norm": 1.2109375,
2141
+ "learning_rate": 1.3850174216027875e-05,
2142
+ "loss": 0.1013,
2143
+ "step": 2740
2144
+ },
2145
+ {
2146
+ "epoch": 0.744450460205739,
2147
+ "grad_norm": 1.078125,
2148
+ "learning_rate": 1.3704994192799073e-05,
2149
+ "loss": 0.0849,
2150
+ "step": 2750
2151
+ },
2152
+ {
2153
+ "epoch": 0.7471575527883053,
2154
+ "grad_norm": 1.71875,
2155
+ "learning_rate": 1.3559814169570267e-05,
2156
+ "loss": 0.1335,
2157
+ "step": 2760
2158
+ },
2159
+ {
2160
+ "epoch": 0.7498646453708717,
2161
+ "grad_norm": 1.4609375,
2162
+ "learning_rate": 1.3414634146341466e-05,
2163
+ "loss": 0.1181,
2164
+ "step": 2770
2165
+ },
2166
+ {
2167
+ "epoch": 0.752571737953438,
2168
+ "grad_norm": 1.6328125,
2169
+ "learning_rate": 1.3269454123112659e-05,
2170
+ "loss": 0.0826,
2171
+ "step": 2780
2172
+ },
2173
+ {
2174
+ "epoch": 0.7552788305360043,
2175
+ "grad_norm": 0.8359375,
2176
+ "learning_rate": 1.3124274099883858e-05,
2177
+ "loss": 0.0965,
2178
+ "step": 2790
2179
+ },
2180
+ {
2181
+ "epoch": 0.7579859231185706,
2182
+ "grad_norm": 3.171875,
2183
+ "learning_rate": 1.2979094076655051e-05,
2184
+ "loss": 0.1554,
2185
+ "step": 2800
2186
+ },
2187
+ {
2188
+ "epoch": 0.7579859231185706,
2189
+ "eval_loss": 0.09837577491998672,
2190
+ "eval_runtime": 62.557,
2191
+ "eval_samples_per_second": 7.993,
2192
+ "eval_steps_per_second": 0.512,
2193
+ "step": 2800
2194
+ },
2195
+ {
2196
+ "epoch": 0.760693015701137,
2197
+ "grad_norm": 0.796875,
2198
+ "learning_rate": 1.283391405342625e-05,
2199
+ "loss": 0.0893,
2200
+ "step": 2810
2201
+ },
2202
+ {
2203
+ "epoch": 0.7634001082837033,
2204
+ "grad_norm": 1.0859375,
2205
+ "learning_rate": 1.2688734030197447e-05,
2206
+ "loss": 0.081,
2207
+ "step": 2820
2208
+ },
2209
+ {
2210
+ "epoch": 0.7661072008662696,
2211
+ "grad_norm": 1.25,
2212
+ "learning_rate": 1.2543554006968642e-05,
2213
+ "loss": 0.0792,
2214
+ "step": 2830
2215
+ },
2216
+ {
2217
+ "epoch": 0.7688142934488359,
2218
+ "grad_norm": 1.5390625,
2219
+ "learning_rate": 1.2398373983739837e-05,
2220
+ "loss": 0.107,
2221
+ "step": 2840
2222
+ },
2223
+ {
2224
+ "epoch": 0.7715213860314023,
2225
+ "grad_norm": 2.390625,
2226
+ "learning_rate": 1.2253193960511034e-05,
2227
+ "loss": 0.1189,
2228
+ "step": 2850
2229
+ },
2230
+ {
2231
+ "epoch": 0.7742284786139686,
2232
+ "grad_norm": 1.3046875,
2233
+ "learning_rate": 1.2108013937282231e-05,
2234
+ "loss": 0.0842,
2235
+ "step": 2860
2236
+ },
2237
+ {
2238
+ "epoch": 0.7769355711965349,
2239
+ "grad_norm": 2.1875,
2240
+ "learning_rate": 1.1962833914053427e-05,
2241
+ "loss": 0.0787,
2242
+ "step": 2870
2243
+ },
2244
+ {
2245
+ "epoch": 0.7796426637791013,
2246
+ "grad_norm": 1.0234375,
2247
+ "learning_rate": 1.1817653890824624e-05,
2248
+ "loss": 0.1177,
2249
+ "step": 2880
2250
+ },
2251
+ {
2252
+ "epoch": 0.7823497563616676,
2253
+ "grad_norm": 1.171875,
2254
+ "learning_rate": 1.1672473867595819e-05,
2255
+ "loss": 0.1093,
2256
+ "step": 2890
2257
+ },
2258
+ {
2259
+ "epoch": 0.7850568489442339,
2260
+ "grad_norm": 1.7734375,
2261
+ "learning_rate": 1.1527293844367016e-05,
2262
+ "loss": 0.0763,
2263
+ "step": 2900
2264
+ },
2265
+ {
2266
+ "epoch": 0.7850568489442339,
2267
+ "eval_loss": 0.0983569398522377,
2268
+ "eval_runtime": 61.958,
2269
+ "eval_samples_per_second": 8.07,
2270
+ "eval_steps_per_second": 0.516,
2271
+ "step": 2900
2272
+ },
2273
+ {
2274
+ "epoch": 0.7877639415268002,
2275
+ "grad_norm": 1.765625,
2276
+ "learning_rate": 1.1382113821138211e-05,
2277
+ "loss": 0.0737,
2278
+ "step": 2910
2279
+ },
2280
+ {
2281
+ "epoch": 0.7904710341093666,
2282
+ "grad_norm": 0.8359375,
2283
+ "learning_rate": 1.1236933797909408e-05,
2284
+ "loss": 0.0957,
2285
+ "step": 2920
2286
+ },
2287
+ {
2288
+ "epoch": 0.7931781266919329,
2289
+ "grad_norm": 1.296875,
2290
+ "learning_rate": 1.1091753774680605e-05,
2291
+ "loss": 0.0986,
2292
+ "step": 2930
2293
+ },
2294
+ {
2295
+ "epoch": 0.7958852192744992,
2296
+ "grad_norm": 1.015625,
2297
+ "learning_rate": 1.09465737514518e-05,
2298
+ "loss": 0.099,
2299
+ "step": 2940
2300
+ },
2301
+ {
2302
+ "epoch": 0.7985923118570655,
2303
+ "grad_norm": 1.859375,
2304
+ "learning_rate": 1.0801393728222997e-05,
2305
+ "loss": 0.1174,
2306
+ "step": 2950
2307
+ },
2308
+ {
2309
+ "epoch": 0.8012994044396319,
2310
+ "grad_norm": 1.484375,
2311
+ "learning_rate": 1.0656213704994193e-05,
2312
+ "loss": 0.1235,
2313
+ "step": 2960
2314
+ },
2315
+ {
2316
+ "epoch": 0.8040064970221982,
2317
+ "grad_norm": 0.6796875,
2318
+ "learning_rate": 1.051103368176539e-05,
2319
+ "loss": 0.0913,
2320
+ "step": 2970
2321
+ },
2322
+ {
2323
+ "epoch": 0.8067135896047645,
2324
+ "grad_norm": 1.8359375,
2325
+ "learning_rate": 1.0365853658536585e-05,
2326
+ "loss": 0.1006,
2327
+ "step": 2980
2328
+ },
2329
+ {
2330
+ "epoch": 0.8094206821873308,
2331
+ "grad_norm": 0.59765625,
2332
+ "learning_rate": 1.0220673635307783e-05,
2333
+ "loss": 0.0819,
2334
+ "step": 2990
2335
+ },
2336
+ {
2337
+ "epoch": 0.8121277747698972,
2338
+ "grad_norm": 1.6796875,
2339
+ "learning_rate": 1.0075493612078979e-05,
2340
+ "loss": 0.0886,
2341
+ "step": 3000
2342
+ },
2343
+ {
2344
+ "epoch": 0.8121277747698972,
2345
+ "eval_loss": 0.09685203433036804,
2346
+ "eval_runtime": 62.2767,
2347
+ "eval_samples_per_second": 8.029,
2348
+ "eval_steps_per_second": 0.514,
2349
+ "step": 3000
2350
+ },
2351
+ {
2352
+ "epoch": 0.8148348673524635,
2353
+ "grad_norm": 0.546875,
2354
+ "learning_rate": 9.930313588850176e-06,
2355
+ "loss": 0.1091,
2356
+ "step": 3010
2357
+ },
2358
+ {
2359
+ "epoch": 0.8175419599350298,
2360
+ "grad_norm": 1.9296875,
2361
+ "learning_rate": 9.785133565621371e-06,
2362
+ "loss": 0.0931,
2363
+ "step": 3020
2364
+ },
2365
+ {
2366
+ "epoch": 0.8202490525175961,
2367
+ "grad_norm": 0.2060546875,
2368
+ "learning_rate": 9.639953542392568e-06,
2369
+ "loss": 0.1179,
2370
+ "step": 3030
2371
+ },
2372
+ {
2373
+ "epoch": 0.8229561451001625,
2374
+ "grad_norm": 2.046875,
2375
+ "learning_rate": 9.494773519163763e-06,
2376
+ "loss": 0.0984,
2377
+ "step": 3040
2378
+ },
2379
+ {
2380
+ "epoch": 0.8256632376827288,
2381
+ "grad_norm": 0.1044921875,
2382
+ "learning_rate": 9.34959349593496e-06,
2383
+ "loss": 0.0745,
2384
+ "step": 3050
2385
+ },
2386
+ {
2387
+ "epoch": 0.828370330265295,
2388
+ "grad_norm": 1.6640625,
2389
+ "learning_rate": 9.204413472706155e-06,
2390
+ "loss": 0.1009,
2391
+ "step": 3060
2392
+ },
2393
+ {
2394
+ "epoch": 0.8310774228478613,
2395
+ "grad_norm": 1.5859375,
2396
+ "learning_rate": 9.059233449477352e-06,
2397
+ "loss": 0.0984,
2398
+ "step": 3070
2399
+ },
2400
+ {
2401
+ "epoch": 0.8337845154304278,
2402
+ "grad_norm": 1.09375,
2403
+ "learning_rate": 8.91405342624855e-06,
2404
+ "loss": 0.0975,
2405
+ "step": 3080
2406
+ },
2407
+ {
2408
+ "epoch": 0.836491608012994,
2409
+ "grad_norm": 0.640625,
2410
+ "learning_rate": 8.768873403019745e-06,
2411
+ "loss": 0.0778,
2412
+ "step": 3090
2413
+ },
2414
+ {
2415
+ "epoch": 0.8391987005955603,
2416
+ "grad_norm": 1.6484375,
2417
+ "learning_rate": 8.623693379790942e-06,
2418
+ "loss": 0.1036,
2419
+ "step": 3100
2420
+ },
2421
+ {
2422
+ "epoch": 0.8391987005955603,
2423
+ "eval_loss": 0.0955013856291771,
2424
+ "eval_runtime": 63.1472,
2425
+ "eval_samples_per_second": 7.918,
2426
+ "eval_steps_per_second": 0.507,
2427
+ "step": 3100
2428
+ },
2429
+ {
2430
+ "epoch": 0.8419057931781266,
2431
+ "grad_norm": 1.453125,
2432
+ "learning_rate": 8.478513356562137e-06,
2433
+ "loss": 0.1405,
2434
+ "step": 3110
2435
+ },
2436
+ {
2437
+ "epoch": 0.844612885760693,
2438
+ "grad_norm": 3.28125,
2439
+ "learning_rate": 8.333333333333334e-06,
2440
+ "loss": 0.1595,
2441
+ "step": 3120
2442
+ },
2443
+ {
2444
+ "epoch": 0.8473199783432593,
2445
+ "grad_norm": 0.8359375,
2446
+ "learning_rate": 8.188153310104529e-06,
2447
+ "loss": 0.1146,
2448
+ "step": 3130
2449
+ },
2450
+ {
2451
+ "epoch": 0.8500270709258256,
2452
+ "grad_norm": 1.71875,
2453
+ "learning_rate": 8.042973286875728e-06,
2454
+ "loss": 0.1328,
2455
+ "step": 3140
2456
+ },
2457
+ {
2458
+ "epoch": 0.852734163508392,
2459
+ "grad_norm": 2.453125,
2460
+ "learning_rate": 7.897793263646923e-06,
2461
+ "loss": 0.119,
2462
+ "step": 3150
2463
+ },
2464
+ {
2465
+ "epoch": 0.8554412560909583,
2466
+ "grad_norm": 1.9921875,
2467
+ "learning_rate": 7.752613240418118e-06,
2468
+ "loss": 0.1161,
2469
+ "step": 3160
2470
+ },
2471
+ {
2472
+ "epoch": 0.8581483486735246,
2473
+ "grad_norm": 4.9375,
2474
+ "learning_rate": 7.607433217189315e-06,
2475
+ "loss": 0.1501,
2476
+ "step": 3170
2477
+ },
2478
+ {
2479
+ "epoch": 0.8608554412560909,
2480
+ "grad_norm": 2.84375,
2481
+ "learning_rate": 7.462253193960511e-06,
2482
+ "loss": 0.1128,
2483
+ "step": 3180
2484
+ },
2485
+ {
2486
+ "epoch": 0.8635625338386573,
2487
+ "grad_norm": 2.015625,
2488
+ "learning_rate": 7.317073170731707e-06,
2489
+ "loss": 0.1266,
2490
+ "step": 3190
2491
+ },
2492
+ {
2493
+ "epoch": 0.8662696264212236,
2494
+ "grad_norm": 1.1328125,
2495
+ "learning_rate": 7.1718931475029035e-06,
2496
+ "loss": 0.092,
2497
+ "step": 3200
2498
+ },
2499
+ {
2500
+ "epoch": 0.8662696264212236,
2501
+ "eval_loss": 0.09543344378471375,
2502
+ "eval_runtime": 63.0583,
2503
+ "eval_samples_per_second": 7.929,
2504
+ "eval_steps_per_second": 0.507,
2505
+ "step": 3200
2506
+ },
2507
+ {
2508
+ "epoch": 0.8689767190037899,
2509
+ "grad_norm": 1.7890625,
2510
+ "learning_rate": 7.0267131242741005e-06,
2511
+ "loss": 0.0913,
2512
+ "step": 3210
2513
+ },
2514
+ {
2515
+ "epoch": 0.8716838115863562,
2516
+ "grad_norm": 1.0078125,
2517
+ "learning_rate": 6.8815331010452966e-06,
2518
+ "loss": 0.1009,
2519
+ "step": 3220
2520
+ },
2521
+ {
2522
+ "epoch": 0.8743909041689226,
2523
+ "grad_norm": 0.953125,
2524
+ "learning_rate": 6.736353077816493e-06,
2525
+ "loss": 0.0858,
2526
+ "step": 3230
2527
+ },
2528
+ {
2529
+ "epoch": 0.8770979967514889,
2530
+ "grad_norm": 0.98828125,
2531
+ "learning_rate": 6.591173054587689e-06,
2532
+ "loss": 0.1458,
2533
+ "step": 3240
2534
+ },
2535
+ {
2536
+ "epoch": 0.8798050893340552,
2537
+ "grad_norm": 1.265625,
2538
+ "learning_rate": 6.445993031358885e-06,
2539
+ "loss": 0.1029,
2540
+ "step": 3250
2541
+ },
2542
+ {
2543
+ "epoch": 0.8825121819166215,
2544
+ "grad_norm": 1.2890625,
2545
+ "learning_rate": 6.300813008130081e-06,
2546
+ "loss": 0.1067,
2547
+ "step": 3260
2548
+ },
2549
+ {
2550
+ "epoch": 0.8852192744991879,
2551
+ "grad_norm": 0.77734375,
2552
+ "learning_rate": 6.155632984901278e-06,
2553
+ "loss": 0.0908,
2554
+ "step": 3270
2555
+ },
2556
+ {
2557
+ "epoch": 0.8879263670817542,
2558
+ "grad_norm": 1.5859375,
2559
+ "learning_rate": 6.010452961672474e-06,
2560
+ "loss": 0.1325,
2561
+ "step": 3280
2562
+ },
2563
+ {
2564
+ "epoch": 0.8906334596643205,
2565
+ "grad_norm": 1.6796875,
2566
+ "learning_rate": 5.86527293844367e-06,
2567
+ "loss": 0.0917,
2568
+ "step": 3290
2569
+ },
2570
+ {
2571
+ "epoch": 0.8933405522468868,
2572
+ "grad_norm": 1.625,
2573
+ "learning_rate": 5.720092915214867e-06,
2574
+ "loss": 0.1192,
2575
+ "step": 3300
2576
+ },
2577
+ {
2578
+ "epoch": 0.8933405522468868,
2579
+ "eval_loss": 0.09418918937444687,
2580
+ "eval_runtime": 62.0629,
2581
+ "eval_samples_per_second": 8.056,
2582
+ "eval_steps_per_second": 0.516,
2583
+ "step": 3300
2584
+ },
2585
+ {
2586
+ "epoch": 0.8960476448294532,
2587
+ "grad_norm": 3.375,
2588
+ "learning_rate": 5.574912891986063e-06,
2589
+ "loss": 0.0943,
2590
+ "step": 3310
2591
+ },
2592
+ {
2593
+ "epoch": 0.8987547374120195,
2594
+ "grad_norm": 2.15625,
2595
+ "learning_rate": 5.429732868757259e-06,
2596
+ "loss": 0.061,
2597
+ "step": 3320
2598
+ },
2599
+ {
2600
+ "epoch": 0.9014618299945858,
2601
+ "grad_norm": 2.1875,
2602
+ "learning_rate": 5.2845528455284555e-06,
2603
+ "loss": 0.0946,
2604
+ "step": 3330
2605
+ },
2606
+ {
2607
+ "epoch": 0.9041689225771521,
2608
+ "grad_norm": 0.412109375,
2609
+ "learning_rate": 5.139372822299652e-06,
2610
+ "loss": 0.0628,
2611
+ "step": 3340
2612
+ },
2613
+ {
2614
+ "epoch": 0.9068760151597185,
2615
+ "grad_norm": 0.6796875,
2616
+ "learning_rate": 4.994192799070848e-06,
2617
+ "loss": 0.1023,
2618
+ "step": 3350
2619
+ },
2620
+ {
2621
+ "epoch": 0.9095831077422848,
2622
+ "grad_norm": 1.140625,
2623
+ "learning_rate": 4.849012775842044e-06,
2624
+ "loss": 0.106,
2625
+ "step": 3360
2626
+ },
2627
+ {
2628
+ "epoch": 0.9122902003248511,
2629
+ "grad_norm": 1.671875,
2630
+ "learning_rate": 4.703832752613241e-06,
2631
+ "loss": 0.1219,
2632
+ "step": 3370
2633
+ },
2634
+ {
2635
+ "epoch": 0.9149972929074174,
2636
+ "grad_norm": 0.208984375,
2637
+ "learning_rate": 4.558652729384437e-06,
2638
+ "loss": 0.1005,
2639
+ "step": 3380
2640
+ },
2641
+ {
2642
+ "epoch": 0.9177043854899838,
2643
+ "grad_norm": 0.6328125,
2644
+ "learning_rate": 4.413472706155633e-06,
2645
+ "loss": 0.068,
2646
+ "step": 3390
2647
+ },
2648
+ {
2649
+ "epoch": 0.9204114780725501,
2650
+ "grad_norm": 1.6796875,
2651
+ "learning_rate": 4.26829268292683e-06,
2652
+ "loss": 0.0998,
2653
+ "step": 3400
2654
+ },
2655
+ {
2656
+ "epoch": 0.9204114780725501,
2657
+ "eval_loss": 0.09559421986341476,
2658
+ "eval_runtime": 62.484,
2659
+ "eval_samples_per_second": 8.002,
2660
+ "eval_steps_per_second": 0.512,
2661
+ "step": 3400
2662
+ },
2663
+ {
2664
+ "epoch": 0.9231185706551164,
2665
+ "grad_norm": 2.140625,
2666
+ "learning_rate": 4.123112659698026e-06,
2667
+ "loss": 0.1139,
2668
+ "step": 3410
2669
+ },
2670
+ {
2671
+ "epoch": 0.9258256632376828,
2672
+ "grad_norm": 0.640625,
2673
+ "learning_rate": 3.977932636469222e-06,
2674
+ "loss": 0.1073,
2675
+ "step": 3420
2676
+ },
2677
+ {
2678
+ "epoch": 0.9285327558202491,
2679
+ "grad_norm": 1.625,
2680
+ "learning_rate": 3.832752613240418e-06,
2681
+ "loss": 0.1067,
2682
+ "step": 3430
2683
+ },
2684
+ {
2685
+ "epoch": 0.9312398484028154,
2686
+ "grad_norm": 1.5703125,
2687
+ "learning_rate": 3.687572590011615e-06,
2688
+ "loss": 0.0804,
2689
+ "step": 3440
2690
+ },
2691
+ {
2692
+ "epoch": 0.9339469409853817,
2693
+ "grad_norm": 2.046875,
2694
+ "learning_rate": 3.542392566782811e-06,
2695
+ "loss": 0.1129,
2696
+ "step": 3450
2697
+ },
2698
+ {
2699
+ "epoch": 0.9366540335679481,
2700
+ "grad_norm": 2.015625,
2701
+ "learning_rate": 3.397212543554007e-06,
2702
+ "loss": 0.1391,
2703
+ "step": 3460
2704
+ },
2705
+ {
2706
+ "epoch": 0.9393611261505144,
2707
+ "grad_norm": 1.375,
2708
+ "learning_rate": 3.2520325203252037e-06,
2709
+ "loss": 0.0884,
2710
+ "step": 3470
2711
+ },
2712
+ {
2713
+ "epoch": 0.9420682187330807,
2714
+ "grad_norm": 2.328125,
2715
+ "learning_rate": 3.1068524970963998e-06,
2716
+ "loss": 0.1047,
2717
+ "step": 3480
2718
+ },
2719
+ {
2720
+ "epoch": 0.944775311315647,
2721
+ "grad_norm": 1.171875,
2722
+ "learning_rate": 2.961672473867596e-06,
2723
+ "loss": 0.1278,
2724
+ "step": 3490
2725
+ },
2726
+ {
2727
+ "epoch": 0.9474824038982134,
2728
+ "grad_norm": 0.453125,
2729
+ "learning_rate": 2.8164924506387924e-06,
2730
+ "loss": 0.0854,
2731
+ "step": 3500
2732
+ },
2733
+ {
2734
+ "epoch": 0.9474824038982134,
2735
+ "eval_loss": 0.0960383489727974,
2736
+ "eval_runtime": 62.7188,
2737
+ "eval_samples_per_second": 7.972,
2738
+ "eval_steps_per_second": 0.51,
2739
+ "step": 3500
2740
+ },
2741
+ {
2742
+ "epoch": 0.9501894964807797,
2743
+ "grad_norm": 1.25,
2744
+ "learning_rate": 2.6713124274099885e-06,
2745
+ "loss": 0.071,
2746
+ "step": 3510
2747
+ },
2748
+ {
2749
+ "epoch": 0.952896589063346,
2750
+ "grad_norm": 0.7421875,
2751
+ "learning_rate": 2.5261324041811846e-06,
2752
+ "loss": 0.1106,
2753
+ "step": 3520
2754
+ },
2755
+ {
2756
+ "epoch": 0.9556036816459123,
2757
+ "grad_norm": 1.1484375,
2758
+ "learning_rate": 2.3809523809523808e-06,
2759
+ "loss": 0.0926,
2760
+ "step": 3530
2761
+ },
2762
+ {
2763
+ "epoch": 0.9583107742284787,
2764
+ "grad_norm": 0.53125,
2765
+ "learning_rate": 2.2357723577235773e-06,
2766
+ "loss": 0.093,
2767
+ "step": 3540
2768
+ },
2769
+ {
2770
+ "epoch": 0.961017866811045,
2771
+ "grad_norm": 0.52734375,
2772
+ "learning_rate": 2.090592334494774e-06,
2773
+ "loss": 0.0976,
2774
+ "step": 3550
2775
+ },
2776
+ {
2777
+ "epoch": 0.9637249593936112,
2778
+ "grad_norm": 0.74609375,
2779
+ "learning_rate": 1.94541231126597e-06,
2780
+ "loss": 0.1135,
2781
+ "step": 3560
2782
+ },
2783
+ {
2784
+ "epoch": 0.9664320519761775,
2785
+ "grad_norm": 2.25,
2786
+ "learning_rate": 1.8002322880371663e-06,
2787
+ "loss": 0.1142,
2788
+ "step": 3570
2789
+ },
2790
+ {
2791
+ "epoch": 0.969139144558744,
2792
+ "grad_norm": 1.15625,
2793
+ "learning_rate": 1.6550522648083624e-06,
2794
+ "loss": 0.0899,
2795
+ "step": 3580
2796
+ },
2797
+ {
2798
+ "epoch": 0.9718462371413102,
2799
+ "grad_norm": 0.5,
2800
+ "learning_rate": 1.5098722415795587e-06,
2801
+ "loss": 0.1226,
2802
+ "step": 3590
2803
+ },
2804
+ {
2805
+ "epoch": 0.9745533297238765,
2806
+ "grad_norm": 0.74609375,
2807
+ "learning_rate": 1.364692218350755e-06,
2808
+ "loss": 0.1007,
2809
+ "step": 3600
2810
+ },
2811
+ {
2812
+ "epoch": 0.9745533297238765,
2813
+ "eval_loss": 0.0948868989944458,
2814
+ "eval_runtime": 62.1229,
2815
+ "eval_samples_per_second": 8.049,
2816
+ "eval_steps_per_second": 0.515,
2817
+ "step": 3600
2818
+ },
2819
+ {
2820
+ "epoch": 0.9772604223064428,
2821
+ "grad_norm": 2.046875,
2822
+ "learning_rate": 1.2195121951219514e-06,
2823
+ "loss": 0.1054,
2824
+ "step": 3610
2825
+ },
2826
+ {
2827
+ "epoch": 0.9799675148890092,
2828
+ "grad_norm": 1.234375,
2829
+ "learning_rate": 1.0743321718931475e-06,
2830
+ "loss": 0.0944,
2831
+ "step": 3620
2832
+ },
2833
+ {
2834
+ "epoch": 0.9826746074715755,
2835
+ "grad_norm": 0.50390625,
2836
+ "learning_rate": 9.291521486643438e-07,
2837
+ "loss": 0.1047,
2838
+ "step": 3630
2839
+ },
2840
+ {
2841
+ "epoch": 0.9853817000541418,
2842
+ "grad_norm": 0.76953125,
2843
+ "learning_rate": 7.839721254355401e-07,
2844
+ "loss": 0.1071,
2845
+ "step": 3640
2846
+ },
2847
+ {
2848
+ "epoch": 0.9880887926367081,
2849
+ "grad_norm": 0.421875,
2850
+ "learning_rate": 6.387921022067365e-07,
2851
+ "loss": 0.1229,
2852
+ "step": 3650
2853
+ },
2854
+ {
2855
+ "epoch": 0.9907958852192745,
2856
+ "grad_norm": 2.53125,
2857
+ "learning_rate": 4.936120789779327e-07,
2858
+ "loss": 0.1092,
2859
+ "step": 3660
2860
+ },
2861
+ {
2862
+ "epoch": 0.9935029778018408,
2863
+ "grad_norm": 1.1796875,
2864
+ "learning_rate": 3.4843205574912896e-07,
2865
+ "loss": 0.0988,
2866
+ "step": 3670
2867
+ },
2868
+ {
2869
+ "epoch": 0.9962100703844071,
2870
+ "grad_norm": 2.703125,
2871
+ "learning_rate": 2.0325203252032523e-07,
2872
+ "loss": 0.1089,
2873
+ "step": 3680
2874
+ },
2875
+ {
2876
+ "epoch": 0.9989171629669734,
2877
+ "grad_norm": 0.5859375,
2878
+ "learning_rate": 5.807200929152149e-08,
2879
+ "loss": 0.0807,
2880
+ "step": 3690
2881
+ }
2882
+ ],
2883
+ "logging_steps": 10,
2884
+ "max_steps": 3694,
2885
+ "num_input_tokens_seen": 0,
2886
+ "num_train_epochs": 1,
2887
+ "save_steps": 500,
2888
+ "stateful_callbacks": {
2889
+ "TrainerControl": {
2890
+ "args": {
2891
+ "should_epoch_stop": false,
2892
+ "should_evaluate": false,
2893
+ "should_log": false,
2894
+ "should_save": true,
2895
+ "should_training_stop": true
2896
+ },
2897
+ "attributes": {}
2898
+ }
2899
+ },
2900
+ "total_flos": 1.5935579955478095e+18,
2901
+ "train_batch_size": 32,
2902
+ "trial_name": null,
2903
+ "trial_params": null
2904
+ }
checkpoint-3694/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:325c2c05de97b3fd6f337bae3f7de80e88004be032aa944334587b15bf5338b9
3
+ size 5176
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ fac8c95b525c8a0f77268b5488c8d1af31c6784b
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "ColQwen2Processor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation_set": {"ndcg_at_1": 0.812, "ndcg_at_3": 0.86786, "ndcg_at_5": 0.87526, "ndcg_at_10": 0.88112, "ndcg_at_20": 0.88502, "ndcg_at_50": 0.88796, "ndcg_at_100": 0.89119, "map_at_1": 0.812, "map_at_3": 0.854, "map_at_5": 0.8581, "map_at_10": 0.86054, "map_at_20": 0.86153, "map_at_50": 0.86207, "map_at_100": 0.86235, "recall_at_1": 0.812, "recall_at_3": 0.908, "recall_at_5": 0.926, "recall_at_10": 0.944, "recall_at_20": 0.96, "recall_at_50": 0.974, "recall_at_100": 0.994, "precision_at_1": 0.812, "precision_at_3": 0.30267, "precision_at_5": 0.1852, "precision_at_10": 0.0944, "precision_at_20": 0.048, "precision_at_50": 0.01948, "precision_at_100": 0.00994, "mrr_at_1": 0.814, "mrr_at_3": 0.856, "mrr_at_5": 0.8601, "mrr_at_10": 0.862818253968254, "mrr_at_20": 0.8641760273610118, "mrr_at_50": 0.8646866894307063, "mrr_at_100": 0.8648347594798413, "naucs_at_1_max": 0.24277355735658093, "naucs_at_1_std": 0.12502909621854932, "naucs_at_1_diff1": 0.923508686543792, "naucs_at_3_max": 0.2787520805423625, "naucs_at_3_std": 0.4184427394146067, "naucs_at_3_diff1": 0.9243393009377648, "naucs_at_5_max": 0.3077825724884538, "naucs_at_5_std": 0.5717313952608055, "naucs_at_5_diff1": 0.9271330153683086, "naucs_at_10_max": 0.39259036948112686, "naucs_at_10_std": 0.8404861944777965, "naucs_at_10_diff1": 0.9521475256769385, "naucs_at_20_max": 0.36094771241829526, "naucs_at_20_std": 0.8856442577030798, "naucs_at_20_diff1": 0.9730392156862733, "naucs_at_50_max": 0.3941679235796853, "naucs_at_50_std": 0.9786324786324722, "naucs_at_50_diff1": 0.9685771744595257, "naucs_at_100_max": 0.14285714285712342, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0}, "syntheticDocQA_energy": {"ndcg_at_1": 0.91, "ndcg_at_3": 0.94393, "ndcg_at_5": 0.94823, "ndcg_at_10": 0.95124, "ndcg_at_20": 0.95124, "ndcg_at_50": 0.95328, "ndcg_at_100": 0.95328, "map_at_1": 0.91, "map_at_3": 0.935, "map_at_5": 0.9375, "map_at_10": 0.93861, "map_at_20": 0.93861, "map_at_50": 0.93896, "map_at_100": 0.93896, "recall_at_1": 0.91, "recall_at_3": 0.97, "recall_at_5": 0.98, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.91, "precision_at_3": 0.32333, "precision_at_5": 0.196, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.91, "mrr_at_3": 0.9383333333333332, "mrr_at_5": 0.9383333333333332, "mrr_at_10": 0.94, "mrr_at_20": 0.94, "mrr_at_50": 0.9403448275862069, "mrr_at_100": 0.9403448275862069, "naucs_at_1_max": 0.6073762838468708, "naucs_at_1_std": -0.36616868969810257, "naucs_at_1_diff1": 0.954611474219316, "naucs_at_3_max": 0.6498599439775861, "naucs_at_3_std": -0.5961718020541529, "naucs_at_3_diff1": 0.9564270152505466, "naucs_at_5_max": 0.7957516339869297, "naucs_at_5_std": -0.024276377217554025, "naucs_at_5_diff1": 0.9346405228758136, "naucs_at_10_max": 0.8692810457516413, "naucs_at_10_std": 0.12278244631185926, "naucs_at_10_diff1": 0.8692810457516413, "naucs_at_20_max": 0.8692810457516413, "naucs_at_20_std": 0.12278244631185926, "naucs_at_20_diff1": 0.8692810457516413, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "syntheticDocQA_healthcare_industry": {"ndcg_at_1": 0.95, "ndcg_at_3": 0.97262, "ndcg_at_5": 0.97693, "ndcg_at_10": 0.97693, "ndcg_at_20": 0.97693, "ndcg_at_50": 0.97693, "ndcg_at_100": 0.97693, "map_at_1": 0.95, "map_at_3": 0.96667, "map_at_5": 0.96917, "map_at_10": 0.96917, "map_at_20": 0.96917, "map_at_50": 0.96917, "map_at_100": 0.96917, "recall_at_1": 0.95, "recall_at_3": 0.99, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.95, "precision_at_3": 0.33, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.95, "mrr_at_3": 0.97, "mrr_at_5": 0.97, "mrr_at_10": 0.97, "mrr_at_20": 0.97, "mrr_at_50": 0.97, "mrr_at_100": 0.97, "naucs_at_1_max": 0.6321195144724556, "naucs_at_1_std": 0.24295051353874755, "naucs_at_1_diff1": 0.9738562091503253, "naucs_at_3_max": 1.0, "naucs_at_3_std": 0.7222222222222157, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "syntheticDocQA_artificial_intelligence_test": {"ndcg_at_1": 0.95, "ndcg_at_3": 0.97524, "ndcg_at_5": 0.97911, "ndcg_at_10": 0.97911, "ndcg_at_20": 0.97911, "ndcg_at_50": 0.97911, "ndcg_at_100": 0.97911, "map_at_1": 0.95, "map_at_3": 0.97, "map_at_5": 0.972, "map_at_10": 0.972, "map_at_20": 0.972, "map_at_50": 0.972, "map_at_100": 0.972, "recall_at_1": 0.95, "recall_at_3": 0.99, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.95, "precision_at_3": 0.33, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.96, "mrr_at_3": 0.975, "mrr_at_5": 0.977, "mrr_at_10": 0.977, "mrr_at_20": 0.977, "mrr_at_50": 0.977, "mrr_at_100": 0.977, "naucs_at_1_max": 0.6671335200746964, "naucs_at_1_std": 0.4161531279178331, "naucs_at_1_diff1": 1.0, "naucs_at_3_max": 0.8692810457516356, "naucs_at_3_std": -0.1713352007469878, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "syntheticDocQA_government_reports": {"ndcg_at_1": 0.84, "ndcg_at_3": 0.9144, "ndcg_at_5": 0.92302, "ndcg_at_10": 0.92302, "ndcg_at_20": 0.92851, "ndcg_at_50": 0.92851, "ndcg_at_100": 0.92851, "map_at_1": 0.84, "map_at_3": 0.89833, "map_at_5": 0.90333, "map_at_10": 0.90333, "map_at_20": 0.90508, "map_at_50": 0.90508, "map_at_100": 0.90508, "recall_at_1": 0.84, "recall_at_3": 0.96, "recall_at_5": 0.98, "recall_at_10": 0.98, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.84, "precision_at_3": 0.32, "precision_at_5": 0.196, "precision_at_10": 0.098, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.87, "mrr_at_3": 0.9133333333333333, "mrr_at_5": 0.9183333333333333, "mrr_at_10": 0.9203333333333333, "mrr_at_20": 0.9203333333333333, "mrr_at_50": 0.9203333333333333, "mrr_at_100": 0.9203333333333333, "naucs_at_1_max": 0.43387947962690165, "naucs_at_1_std": 0.19615243004418212, "naucs_at_1_diff1": 0.913352970054001, "naucs_at_3_max": 0.8068394024276336, "naucs_at_3_std": 0.052404295051358386, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 0.6790382819794609, "naucs_at_5_std": -0.5088702147525628, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 0.6790382819794609, "naucs_at_10_std": -0.5088702147525628, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "infovqa_subsampled": {"ndcg_at_1": 0.844, "ndcg_at_3": 0.88081, "ndcg_at_5": 0.89036, "ndcg_at_10": 0.89818, "ndcg_at_20": 0.90126, "ndcg_at_50": 0.90426, "ndcg_at_100": 0.90521, "map_at_1": 0.844, "map_at_3": 0.87267, "map_at_5": 0.87777, "map_at_10": 0.88104, "map_at_20": 0.88191, "map_at_50": 0.88248, "map_at_100": 0.88256, "recall_at_1": 0.844, "recall_at_3": 0.904, "recall_at_5": 0.928, "recall_at_10": 0.952, "recall_at_20": 0.964, "recall_at_50": 0.978, "recall_at_100": 0.984, "precision_at_1": 0.844, "precision_at_3": 0.30133, "precision_at_5": 0.1856, "precision_at_10": 0.0952, "precision_at_20": 0.0482, "precision_at_50": 0.01956, "precision_at_100": 0.00984, "mrr_at_1": 0.842, "mrr_at_3": 0.8713333333333334, "mrr_at_5": 0.8765333333333333, "mrr_at_10": 0.8800960317460317, "mrr_at_20": 0.8806633541295306, "mrr_at_50": 0.8813297802013275, "mrr_at_100": 0.8814079680628487, "naucs_at_1_max": 0.46847446557311256, "naucs_at_1_std": -0.08684593936044609, "naucs_at_1_diff1": 0.9173553719008263, "naucs_at_3_max": 0.533068783068784, "naucs_at_3_std": -0.13130252100840056, "naucs_at_3_diff1": 0.8704968098350448, "naucs_at_5_max": 0.6500804025313851, "naucs_at_5_std": 0.03800964830376213, "naucs_at_5_diff1": 0.8660390081958717, "naucs_at_10_max": 0.8607415188297549, "naucs_at_10_std": 0.30569172113289783, "naucs_at_10_diff1": 0.9255952380952372, "naucs_at_20_max": 0.9105197634609353, "naucs_at_20_std": 0.516651104886399, "naucs_at_20_diff1": 0.9153179790434682, "naucs_at_50_max": 0.9643493761140892, "naucs_at_50_std": 0.6295306001188329, "naucs_at_50_diff1": 0.9881164587046902, "naucs_at_100_max": 0.9509803921568729, "naucs_at_100_std": 0.6823062558356714, "naucs_at_100_diff1": 0.9836601307189619}, "docvqa_subsampled": {"ndcg_at_1": 0.458, "ndcg_at_3": 0.5229, "ndcg_at_5": 0.5526, "ndcg_at_10": 0.57454, "ndcg_at_20": 0.58849, "ndcg_at_50": 0.60199, "ndcg_at_100": 0.61333, "map_at_1": 0.458, "map_at_3": 0.50667, "map_at_5": 0.52317, "map_at_10": 0.53219, "map_at_20": 0.5359, "map_at_50": 0.53807, "map_at_100": 0.53907, "recall_at_1": 0.458, "recall_at_3": 0.57, "recall_at_5": 0.642, "recall_at_10": 0.71, "recall_at_20": 0.766, "recall_at_50": 0.834, "recall_at_100": 0.904, "precision_at_1": 0.458, "precision_at_3": 0.19, "precision_at_5": 0.1284, "precision_at_10": 0.071, "precision_at_20": 0.0383, "precision_at_50": 0.01668, "precision_at_100": 0.00904, "mrr_at_1": 0.46, "mrr_at_3": 0.5093333333333333, "mrr_at_5": 0.5229333333333333, "mrr_at_10": 0.532697619047619, "mrr_at_20": 0.5365797975674137, "mrr_at_50": 0.5389656939675365, "mrr_at_100": 0.539727584246403, "naucs_at_1_max": 0.3528060025264396, "naucs_at_1_std": 0.3861355715872713, "naucs_at_1_diff1": 0.8678241366903641, "naucs_at_3_max": 0.2883454600249708, "naucs_at_3_std": 0.4173677186033496, "naucs_at_3_diff1": 0.7927268552403092, "naucs_at_5_max": 0.23390485715109952, "naucs_at_5_std": 0.4980142512332795, "naucs_at_5_diff1": 0.7531549204578601, "naucs_at_10_max": 0.1449585827326127, "naucs_at_10_std": 0.5381835702240428, "naucs_at_10_diff1": 0.6989678112780986, "naucs_at_20_max": 0.05591636166163949, "naucs_at_20_std": 0.6568903173965446, "naucs_at_20_diff1": 0.6609344853619661, "naucs_at_50_max": 0.07566480367377483, "naucs_at_50_std": 0.7492553961529781, "naucs_at_50_diff1": 0.6152623022794955, "naucs_at_100_max": 0.1628540305010893, "naucs_at_100_std": 0.8644763460939922, "naucs_at_100_diff1": 0.5679952536570193}, "arxivqa_subsampled": {"ndcg_at_1": 0.798, "ndcg_at_3": 0.85012, "ndcg_at_5": 0.86406, "ndcg_at_10": 0.87306, "ndcg_at_20": 0.87665, "ndcg_at_50": 0.88058, "ndcg_at_100": 0.88319, "map_at_1": 0.798, "map_at_3": 0.83767, "map_at_5": 0.84537, "map_at_10": 0.84904, "map_at_20": 0.85005, "map_at_50": 0.85066, "map_at_100": 0.8509, "recall_at_1": 0.798, "recall_at_3": 0.886, "recall_at_5": 0.92, "recall_at_10": 0.948, "recall_at_20": 0.962, "recall_at_50": 0.982, "recall_at_100": 0.998, "precision_at_1": 0.798, "precision_at_3": 0.29533, "precision_at_5": 0.184, "precision_at_10": 0.0948, "precision_at_20": 0.0481, "precision_at_50": 0.01964, "precision_at_100": 0.00998, "mrr_at_1": 0.8, "mrr_at_3": 0.8396666666666667, "mrr_at_5": 0.8475666666666667, "mrr_at_10": 0.8502825396825396, "mrr_at_20": 0.8514597252420782, "mrr_at_50": 0.8520988813643489, "mrr_at_100": 0.8523317553428907, "naucs_at_1_max": 0.6973486594596197, "naucs_at_1_std": 0.08025893817504043, "naucs_at_1_diff1": 0.9113989303434495, "naucs_at_3_max": 0.7709141458704454, "naucs_at_3_std": 0.09967203289659907, "naucs_at_3_diff1": 0.9058551284399088, "naucs_at_5_max": 0.8029411764705887, "naucs_at_5_std": 0.12350606909430441, "naucs_at_5_diff1": 0.9101890756302522, "naucs_at_10_max": 0.8147130647130642, "naucs_at_10_std": 0.1442038353803018, "naucs_at_10_diff1": 0.9097716009480712, "naucs_at_20_max": 0.8086146739397527, "naucs_at_20_std": 0.06732517568429877, "naucs_at_20_diff1": 0.9352548036758574, "naucs_at_50_max": 0.9709513435003653, "naucs_at_50_std": 0.006328457308844334, "naucs_at_50_diff1": 0.9709513435003653, "naucs_at_100_max": 0.86928104575168, "naucs_at_100_std": -1.739962651727529, "naucs_at_100_diff1": 1.0}, "tabfquad_subsampled": {"ndcg_at_1": 0.79286, "ndcg_at_3": 0.84507, "ndcg_at_5": 0.86136, "ndcg_at_10": 0.86829, "ndcg_at_20": 0.8756, "ndcg_at_50": 0.88137, "ndcg_at_100": 0.88199, "map_at_1": 0.79286, "map_at_3": 0.83333, "map_at_5": 0.84244, "map_at_10": 0.8453, "map_at_20": 0.84735, "map_at_50": 0.84833, "map_at_100": 0.84839, "recall_at_1": 0.79286, "recall_at_3": 0.87857, "recall_at_5": 0.91786, "recall_at_10": 0.93929, "recall_at_20": 0.96786, "recall_at_50": 0.99643, "recall_at_100": 1.0, "precision_at_1": 0.79286, "precision_at_3": 0.29286, "precision_at_5": 0.18357, "precision_at_10": 0.09393, "precision_at_20": 0.04839, "precision_at_50": 0.01993, "precision_at_100": 0.01, "mrr_at_1": 0.7964285714285714, "mrr_at_3": 0.8345238095238094, "mrr_at_5": 0.8436309523809524, "mrr_at_10": 0.8464923469387755, "mrr_at_20": 0.8485418927876635, "mrr_at_50": 0.849505299576952, "mrr_at_100": 0.849570234641887, "naucs_at_1_max": 0.3751019912157351, "naucs_at_1_std": 0.2023332118118846, "naucs_at_1_diff1": 0.8272572609065495, "naucs_at_3_max": 0.5210547028728848, "naucs_at_3_std": 0.30988924495418024, "naucs_at_3_diff1": 0.7500702760443004, "naucs_at_5_max": 0.4590995818617313, "naucs_at_5_std": 0.18519871716802636, "naucs_at_5_diff1": 0.6934599926927276, "naucs_at_10_max": 0.449524908002418, "naucs_at_10_std": 0.1558466523864459, "naucs_at_10_diff1": 0.6794364804745436, "naucs_at_20_max": 0.6411453470276975, "naucs_at_20_std": 0.4541964934121846, "naucs_at_20_diff1": 0.7170349621330007, "naucs_at_50_max": 0.8692810457515607, "naucs_at_50_std": 0.7222222222221809, "naucs_at_50_diff1": 0.7222222222221809, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0}, "tatdqa": {"ndcg_at_1": 0.60974, "ndcg_at_3": 0.71586, "ndcg_at_5": 0.7459, "ndcg_at_10": 0.76445, "ndcg_at_20": 0.77266, "ndcg_at_50": 0.77705, "ndcg_at_100": 0.77841, "map_at_1": 0.60974, "map_at_3": 0.69032, "map_at_5": 0.70689, "map_at_10": 0.71458, "map_at_20": 0.71684, "map_at_50": 0.71759, "map_at_100": 0.71771, "recall_at_1": 0.60974, "recall_at_3": 0.78954, "recall_at_5": 0.8629, "recall_at_10": 0.92002, "recall_at_20": 0.9525, "recall_at_50": 0.97414, "recall_at_100": 0.98256, "precision_at_1": 0.60974, "precision_at_3": 0.26318, "precision_at_5": 0.17258, "precision_at_10": 0.092, "precision_at_20": 0.04762, "precision_at_50": 0.01948, "precision_at_100": 0.00983, "mrr_at_1": 0.6103427540589297, "mrr_at_3": 0.6915213469633193, "mrr_at_5": 0.7078773301262778, "mrr_at_10": 0.7151915165745593, "mrr_at_20": 0.7174885033422889, "mrr_at_50": 0.718276905274417, "mrr_at_100": 0.7184007462918804, "naucs_at_1_max": 0.1677616463547121, "naucs_at_1_std": -0.2994746722385698, "naucs_at_1_diff1": 0.8001707275183607, "naucs_at_3_max": 0.13932493130162668, "naucs_at_3_std": -0.3030066980462948, "naucs_at_3_diff1": 0.69560870623967, "naucs_at_5_max": 0.2722755429808133, "naucs_at_5_std": -0.15825137064450098, "naucs_at_5_diff1": 0.6825585257611015, "naucs_at_10_max": 0.34997449212156656, "naucs_at_10_std": 0.0543166540386977, "naucs_at_10_diff1": 0.6657264160921791, "naucs_at_20_max": 0.46471371978487297, "naucs_at_20_std": 0.327828544707501, "naucs_at_20_diff1": 0.624379378196635, "naucs_at_50_max": 0.5249536127855756, "naucs_at_50_std": 0.6604230927181238, "naucs_at_50_diff1": 0.6028649549065449, "naucs_at_100_max": 0.6651098964642715, "naucs_at_100_std": 0.7610489179350859, "naucs_at_100_diff1": 0.625785333338424}, "shift_project": {"ndcg_at_1": 0.76, "ndcg_at_3": 0.8544, "ndcg_at_5": 0.86302, "ndcg_at_10": 0.87274, "ndcg_at_20": 0.8751, "ndcg_at_50": 0.87891, "ndcg_at_100": 0.87891, "map_at_1": 0.76, "map_at_3": 0.83167, "map_at_5": 0.83667, "map_at_10": 0.84069, "map_at_20": 0.84125, "map_at_50": 0.8418, "map_at_100": 0.8418, "recall_at_1": 0.76, "recall_at_3": 0.92, "recall_at_5": 0.94, "recall_at_10": 0.97, "recall_at_20": 0.98, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.76, "precision_at_3": 0.30667, "precision_at_5": 0.188, "precision_at_10": 0.097, "precision_at_20": 0.049, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.76, "mrr_at_3": 0.8383333333333333, "mrr_at_5": 0.8408333333333333, "mrr_at_10": 0.8448611111111112, "mrr_at_20": 0.8454166666666667, "mrr_at_50": 0.8459742602103204, "mrr_at_100": 0.8459742602103204, "naucs_at_1_max": 0.05836289694557389, "naucs_at_1_std": -0.13786017132473838, "naucs_at_1_diff1": 0.6319330276023185, "naucs_at_3_max": -0.012488328664798848, "naucs_at_3_std": -0.37073996265172776, "naucs_at_3_diff1": 0.46358543417367004, "naucs_at_5_max": 0.15483971366324228, "naucs_at_5_std": -0.22478991596638775, "naucs_at_5_diff1": 0.5771864301276066, "naucs_at_10_max": -0.35434173669467856, "naucs_at_10_std": -0.3963585434173691, "naucs_at_10_diff1": 0.6934329287270459, "naucs_at_20_max": -0.5929038281979383, "naucs_at_20_std": -0.5088702147525547, "naucs_at_20_diff1": 0.6790382819794609, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}}
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
3
+ size 11420538
tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "model_max_length": 32768,
138
+ "num_image_tokens": 2048,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "processor_class": "ColQwen2Processor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
training_config.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/colqwen2-ba16 # ba4-highres
4
+ processor:
5
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
6
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2Processor
7
+ pretrained_model_name_or_path: "./models/colqwen2_base" # "./models/paligemma-3b-mix-448"
8
+ # num_image_tokens: 2048
9
+ # max_length: 50
10
+
11
+ model:
12
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
13
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2
14
+ pretrained_model_name_or_path: "./models/colqwen2_base"
15
+ torch_dtype: !ext torch.bfloat16
16
+ use_cache: false
17
+ attn_implementation: "flash_attention_2"
18
+ # device_map: "auto"
19
+ # quantization_config:
20
+ # (): transformers.BitsAndBytesConfig
21
+ # load_in_4bit: true
22
+ # bnb_4bit_quant_type: "nf4"
23
+ # bnb_4bit_compute_dtype: "bfloat16"
24
+ # bnb_4bit_use_double_quant: true
25
+
26
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set
27
+ eval_dataset_loader: !import ../data/test_data.yaml
28
+
29
+ # max_length: 50
30
+ run_eval: true
31
+ add_suffix: true
32
+ loss_func:
33
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
34
+ tr_args:
35
+ (): transformers.training_args.TrainingArguments
36
+ output_dir: null
37
+ overwrite_output_dir: true
38
+ num_train_epochs: 1
39
+ per_device_train_batch_size: 16
40
+ # 6 x 8 gpus = 48 batch size
41
+ # gradient_accumulation_steps: 4
42
+ per_device_eval_batch_size: 4
43
+ eval_strategy: "steps"
44
+ # dataloader_num_workers: 8
45
+ # bf16: true
46
+ save_steps: 500
47
+ logging_steps: 10
48
+ eval_steps: 100
49
+ warmup_steps: 250
50
+ learning_rate: 5e-5
51
+ save_total_limit: 1
52
+ # resume_from_checkpoint: true
53
+ # optim: "paged_adamw_8bit"
54
+
55
+ peft_config:
56
+ (): peft.LoraConfig
57
+ r: 32
58
+ lora_alpha: 32
59
+ lora_dropout: 0.1
60
+ init_lora_weights: "gaussian"
61
+ bias: "none"
62
+ task_type: "FEATURE_EXTRACTION"
63
+ target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
64
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
65
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff