Model save
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [mansee/swin-tiny-patch4-window7-224-img_orientation](https://huggingface.co/mansee/swin-tiny-patch4-window7-224-img_orientation) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -61,17 +61,22 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.7794067507671326
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [mansee/swin-tiny-patch4-window7-224-img_orientation](https://huggingface.co/mansee/swin-tiny-patch4-window7-224-img_orientation) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4538
|
36 |
+
- Accuracy: 0.7794
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 10
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.3217 | 1.0 | 412 | 0.4922 | 0.7533 |
|
71 |
+
| 0.3716 | 2.0 | 825 | 0.4986 | 0.7601 |
|
72 |
+
| 0.3756 | 3.0 | 1237 | 0.4427 | 0.7762 |
|
73 |
+
| 0.3926 | 4.0 | 1650 | 0.4515 | 0.7733 |
|
74 |
+
| 0.3859 | 5.0 | 2062 | 0.4394 | 0.7717 |
|
75 |
+
| 0.3822 | 6.0 | 2475 | 0.4410 | 0.7784 |
|
76 |
+
| 0.3804 | 7.0 | 2887 | 0.4561 | 0.7767 |
|
77 |
+
| 0.3231 | 8.0 | 3300 | 0.4505 | 0.7784 |
|
78 |
+
| 0.3295 | 9.0 | 3712 | 0.4607 | 0.7789 |
|
79 |
+
| 0.321 | 9.99 | 4120 | 0.4538 | 0.7794 |
|
80 |
|
81 |
|
82 |
### Framework versions
|