manred1997 commited on
Commit
a20e64a
1 Parent(s): 4924041

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +184 -124
README.md CHANGED
@@ -1,37 +1,33 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -41,37 +37,188 @@ This is the model card of a 🤗 transformers model that has been pushed on the
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
  ### Recommendations
65
 
66
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
@@ -79,26 +226,15 @@ Use the code below to get started with the model.
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
@@ -110,90 +246,14 @@ Use the code below to get started with the model.
110
 
111
  <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - gec
5
+ - grammar
6
+ language:
7
+ - en
8
+ metrics:
9
+ - accuracy
10
+ base_model:
11
+ - microsoft/deberta-large
12
+ pipeline_tag: token-classification
13
  ---
14
 
15
  # Model Card for Model ID
16
 
17
  <!-- Provide a quick summary of what the model is/does. -->
18
 
 
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
  <!-- Provide a longer summary of what this model is. -->
24
 
25
+ This model is a grammar error correction (GEC) system fine-tuned from the `microsoft/deberta-large` model, designed to detect and correct grammatical errors in English text. The model focuses on common grammatical mistakes such as verb tense, noun inflection, adjective usage, and more. It is particularly useful for language learners or applications requiring enhanced grammatical precision.
 
 
 
 
 
 
 
 
 
 
26
 
27
+ - **Model type:** Token classification with sequence-to-sequence correction
28
+ - **Language(s) (NLP):** English
29
+ - **Finetuned from model:** `microsoft/deberta-large`
30
 
 
 
 
31
 
32
  ## Uses
33
 
 
37
 
38
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
39
 
40
+ This model can be used directly for grammar error detection and correction in English texts. It's ideal for integration into writing assistants, educational software, or proofreading tools.
41
 
42
+ ### Downstream Use
43
 
44
+ The model can be fine-tuned for specific domains like academic writing, business communication, or informal text correction, ensuring high precision in context-specific grammar errors.
 
 
45
 
46
  ### Out-of-Scope Use
47
 
48
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
49
 
50
+ This model is not suitable for non-English text, non-grammatical corrections (e.g., style, tone, or logic), or detecting complex errors beyond basic grammar structures.
51
+
52
 
53
  ## Bias, Risks, and Limitations
54
 
55
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
56
 
57
+ The model is trained on general English corpora and may underperform with non-standard dialects (e.g Spoken language), or domain-specific jargon. Users should be cautious when applying it to such contexts, as it might introduce or overlook errors due to the limitations in its training data.
58
+
59
 
60
  ### Recommendations
61
 
62
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
63
 
64
+ While the model provides strong general performance, users should manually review corrections, especially in specialized or creative contexts where grammar rules can be more fluid.
65
 
66
  ## How to Get Started with the Model
67
 
68
  Use the code below to get started with the model.
69
 
70
+ Use the following code to get started with the model:
71
+
72
+ ```python
73
+ from dataclasses import dataclass
74
+ from typing import Optional, Tuple
75
+
76
+ import torch
77
+ from torch import nn
78
+ from torch.nn import CrossEntropyLoss
79
+ from transformers import AutoConfig, AutoTokenizer
80
+ from transformers.file_utils import ModelOutput
81
+ from transformers.models.deberta.modeling_deberta import (
82
+ DebertaModel,
83
+ DebertaPreTrainedModel,
84
+ )
85
+
86
+
87
+ @dataclass
88
+ class XGECToROutput(ModelOutput):
89
+ """
90
+ Output type of `XGECToRForTokenClassification.forward()`.
91
+ loss (`torch.FloatTensor`, optional)
92
+ logits_correction (`torch.FloatTensor`) : The correction logits for each token.
93
+ logits_detection (`torch.FloatTensor`) : The detection logits for each token.
94
+ hidden_states (`Tuple[torch.FloatTensor]`, optional)
95
+ attentions (`Tuple[torch.FloatTensor]`, optional)
96
+ """
97
+
98
+ loss: Optional[torch.FloatTensor] = None
99
+ logits_correction: torch.FloatTensor = None
100
+ logits_detection: torch.FloatTensor = None
101
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
102
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
103
+
104
+
105
+ class XGECToRDeberta(DebertaPreTrainedModel):
106
+ """
107
+ This class overrides the GECToR model to include an error detection head in addition to the token classification head.
108
+ """
109
+
110
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
111
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
112
+
113
+ def __init__(self, config):
114
+ super().__init__(config)
115
+ self.num_labels = config.num_labels
116
+ self.unk_tag_idx = config.label2id.get("@@UNKNOWN@@", None)
117
+
118
+ self.deberta = DebertaModel(config)
119
+
120
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
121
+
122
+ if self.unk_tag_idx is not None:
123
+ self.error_detector = nn.Linear(config.hidden_size, 3)
124
+ else:
125
+ self.error_detector = nn.Linear(config.hidden_size, 2)
126
+
127
+ def forward(
128
+ self,
129
+ input_ids=None,
130
+ attention_mask=None,
131
+ token_type_ids=None,
132
+ position_ids=None,
133
+ inputs_embeds=None,
134
+ labels=None,
135
+ output_attentions=None,
136
+ output_hidden_states=None,
137
+ return_dict=None,
138
+ ):
139
+ r"""
140
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
141
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
142
+ """
143
+ return_dict = (
144
+ return_dict if return_dict is not None else self.config.use_return_dict
145
+ )
146
+
147
+ outputs = self.deberta(
148
+ input_ids,
149
+ attention_mask=attention_mask,
150
+ token_type_ids=token_type_ids,
151
+ position_ids=position_ids,
152
+ inputs_embeds=inputs_embeds,
153
+ output_attentions=output_attentions,
154
+ output_hidden_states=output_hidden_states,
155
+ return_dict=return_dict,
156
+ )
157
+
158
+ sequence_output = outputs[0]
159
+
160
+ logits_correction = self.classifier(sequence_output)
161
+ logits_detection = self.error_detector(sequence_output)
162
+
163
+ loss = None
164
+ if labels is not None:
165
+ loss_fct = CrossEntropyLoss()
166
+ loss = loss_fct(
167
+ logits_correction.view(-1, self.num_labels), labels.view(-1)
168
+ )
169
+
170
+ labels_detection = torch.ones_like(labels)
171
+ labels_detection[labels == 0] = 0
172
+ labels_detection[labels == -100] = -100 # ignore padding
173
+ if self.unk_tag_idx is not None:
174
+ labels_detection[labels == self.unk_tag_idx] = 2
175
+ loss_detection = loss_fct(
176
+ logits_detection.view(-1, 3), labels_detection.view(-1)
177
+ )
178
+ else:
179
+ loss_detection = loss_fct(
180
+ logits_detection.view(-1, 2), labels_detection.view(-1)
181
+ )
182
+
183
+ loss += loss_detection
184
+
185
+ if not return_dict:
186
+ output = (
187
+ logits_correction,
188
+ logits_detection,
189
+ ) + outputs[2:]
190
+ return ((loss,) + output) if loss is not None else output
191
+
192
+ return XGECToROutput(
193
+ loss=loss,
194
+ logits_correction=logits_correction,
195
+ logits_detection=logits_detection,
196
+ hidden_states=outputs.hidden_states,
197
+ attentions=outputs.attentions,
198
+ )
199
+
200
+ def get_input_embeddings(self):
201
+ return self.deberta.get_input_embeddings()
202
+
203
+ def set_input_embeddings(self, value):
204
+ self.deberta.set_input_embeddings(value)
205
+
206
+
207
+ config = AutoConfig.from_pretrained("manred1997/deberta-v3-large-lemon-spell_5k")
208
+ tokenizer = AutoTokenizer.from_pretrained("manred1997/deberta-v3-large-lemon-spell_5k")
209
+ model = XGECToRDeberta.from_pretrained(
210
+ "manred1997/deberta-v3-large-lemon-spell_5k", config=config
211
+ )
212
+
213
+
214
+
215
+ config = AutoConfig.from_pretrained("manred1997/deberta-large-lemon-spell_5k")
216
+ tokenizer = AutoTokenizer.from_pretrained("manred1997/deberta-large-lemon-spell_5k")
217
+ model = XGECToRDeberta.from_pretrained(
218
+ "manred1997/deberta-large-lemon-spell_5k", config=config
219
+ )
220
+
221
+ ```
222
 
223
  ## Training Details
224
 
 
226
 
227
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
228
 
229
+ We trained the model in three stages, each requiring specific datasets. Below is a description of the data used in each stage:
 
 
 
 
 
 
 
 
 
 
 
230
 
231
+ | Stage | Dataset(s) Used | Description |
232
+ |--------|--------|--------|
233
+ | Stage 1| Shuffled 9 million sentences from the PIE corpus (A1 part only) | 9 million shuffled sentences from the PIE corpus, focusing on A1-level sentences. |
234
+ | Stage 2| Shuffled combination of NUCLE, FCE, Lang8, W&I + Locness datasets | Lang8 dataset contained 947,344 sentences, with 52.5% having different source and target sentences. |
235
+ | | | If using a newer Lang8 dump, consider sampling. | |
236
+ | Stage 3| Shuffled version of W&I + Locness datasets | Final shuffled version of the W&I + Locness datasets. |
237
 
 
 
 
 
 
238
 
239
  ## Evaluation
240
 
 
246
 
247
  <!-- This should link to a Dataset Card if possible. -->
248
 
249
+ The model was tested on the W&I + Locness test set, a standard benchmark for grammar error correction.
 
 
 
 
 
 
250
 
251
  #### Metrics
252
 
253
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
254
 
255
+ The primary evaluation metric used was F0.5, measuring the model's ability to identify and fix grammatical errors correctly.
256
 
257
  ### Results
258
 
259
+ F0.5 = 73.05