a2c-AntBulletEnv-v0 / config.json
manmyung's picture
Initial commit
0f1de2b
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e55fcb09c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e55fcb09cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e55fcb09d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e55fcb09e10>", "_build": "<function ActorCriticPolicy._build at 0x7e55fcb09ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7e55fcb09f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e55fcb09fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e55fcb0a050>", "_predict": "<function ActorCriticPolicy._predict at 0x7e55fcb0a0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e55fcb0a170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e55fcb0a200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e55fcb0a290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e55fcb03880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689489047586676092, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPB0ZL/bBG8/MNtav1Tg6r6/8O8/820mwE5Av77N2BJADf7WPmUwJcCZXJu/1hzBPiT1DT9L+Ay/unm7vs9Zjj8Ordk+xRWGv29/sb+R6oE+pzuqvyNKEDz2I5a/ME0BwGsvO79ARbq/hcKqPiErMj8jeio+NCMZP4SXZ77QULo/MwQpQIc1zr+wRUe9Qc61PmJExb4GmoE/33vIPxRCdD/VysG/hn2OP7TpgL5DbOa/kxD4PQo5BUAfMvG+A1RCQA5yyD9j4gi7TgGTvk9pVL1rLzu/QEW6v4XCqj5y6re/a9DKP8N7Gz9UNXa+1mmDPxUZI73BncS/HuZFPiIb2b6Zn6q/7GvrPjXeuT6biQ5AicSNv30hBcDeC6y+NHtyPxeJtL8BCws/AG6IvznWRb5koHc/Rn5KQEgUXT8RLKe+ay87v0BFur+Fwqo+cuq3vwDxvj91mrM+dJjqPb6YJj/txuk+UR8BvxFxvj6V8Ea/NU6Xv/mW8b54fz+/ZqeMP26dKj+mpai/RnjBvonYG718/lS/01qRvXxZnL4qIF+/DFiWv29EUD+NA7s+MAFCvmsvO79ARbq/hcKqPnLqt7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAs3sq0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtE9nvQAAAACFduG/AAAAAB+97r0AAAAAeiUAQAAAAADpaxA+AAAAAEzw2j8AAAAAhW+8PQAAAAA1Btq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedcCtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIcj5T0AAAAAL8rfvwAAAABBHuk8AAAAAJSg/j8AAAAAWDHmPQAAAACdRNs/AAAAADY2DD0AAAAA6OH2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJw5EbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAstZ68AAAAAEnP+r8AAAAA+YuMPQAAAAAbjt0/AAAAAGhBlr0AAAAAu/zvPwAAAAA70B89AAAAAPar878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSysO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZVWlPQAAAAB5e+q/AAAAAHSj/T0AAAAAttfyPwAAAACup+C9AAAAAGQX9j8AAAAAYRz7ugAAAAAG+dy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJeq5XbM5feMAWyUTegDjAF0lEdArLV9eY2KmHV9lChoBkdAnbttQKrq+2gHTegDaAhHQKy37QNTcZd1fZQoaAZHQJqNOK/EfkpoB03oA2gIR0CsuDMqaw2VdX2UKGgGR0CdWgBu4wyqaAdN6ANoCEdArLic2BJ7LXV9lChoBkdAl1tUj1PFemgHTegDaAhHQKzB2Kneizt1fZQoaAZHQJ0kj6DXe3xoB03oA2gIR0CsxFWEsasIdX2UKGgGR0Cd0pQ7tAs1aAdN6ANoCEdArMSYFFDv3XV9lChoBkdAlXdIPwuuimgHTegDaAhHQKzFBAKv3al1fZQoaAZHQJt3052hZhdoB03oA2gIR0Cs0j3XZoPDdX2UKGgGR0CgEqVLJ0W/aAdN6ANoCEdArNTQHcDbJ3V9lChoBkdAoA6JY5ksjGgHTegDaAhHQKzVE7ulXRx1fZQoaAZHQKA+9W5paidoB03oA2gIR0Cs1YVe0G/vdX2UKGgGR0CffSARTS9eaAdN6ANoCEdArN7wZVGTcXV9lChoBkdAoJ7uxB3RomgHTegDaAhHQKzhbQpnYg91fZQoaAZHQJ8zSPT5O8FoB03oA2gIR0Cs4bByjpLVdX2UKGgGR0CgKkMNc4YKaAdN6ANoCEdArOIcgMc6vXV9lChoBkdAoIvih37k4mgHTegDaAhHQKzu0ipNsWR1fZQoaAZHQJmbx1cMVlBoB03oA2gIR0Cs8bRL9MsZdX2UKGgGR0CVWTw6QvHtaAdN6ANoCEdArPH7fWMCLnV9lChoBkdAmCq0mdAgPmgHTegDaAhHQKzyaXu3MIN1fZQoaAZHQJ05dlcyFf1oB03oA2gIR0Cs+8Oc+aBqdX2UKGgGR0CaefnqVyFPaAdN6ANoCEdArP5krI5o5HV9lChoBkdAnQGbJwKjSGgHTegDaAhHQKz+qfxMFll1fZQoaAZHQKAlJbN8ma9oB03oA2gIR0Cs/xmMfigkdX2UKGgGR0CZl1kHD766aAdN6ANoCEdArQqwG+sYEXV9lChoBkdAn7xs274BWGgHTegDaAhHQK0OwCwr1/V1fZQoaAZHQJ2SDgydnTRoB03oA2gIR0CtDyv5gw49dX2UKGgGR0Cdy78BuGbkaAdN6ANoCEdArQ+bGT9sJ3V9lChoBkdAnbA/thNM5GgHTegDaAhHQK0ZARq46Op1fZQoaAZHQJxRq2F36hxoB03oA2gIR0CtG3saCL/CdX2UKGgGR0CcHkvFm4AkaAdN6ANoCEdArRu+6NEPUnV9lChoBkdAoFwGZ/kNnWgHTegDaAhHQK0cLWy1NQF1fZQoaAZHQJz2K+K0lZ5oB03oA2gIR0CtJmFgUlAvdX2UKGgGR0Cgn5zG5tm+aAdN6ANoCEdArSosp/gBLnV9lChoBkdAmeFpfpljE2gHTegDaAhHQK0qnCO3lS11fZQoaAZHQJnKNNBWxQloB03oA2gIR0CtK0TfzjFRdX2UKGgGR0CgTcAs9SuRaAdN6ANoCEdArTWqZlWfb3V9lChoBkdAoDbEhvBJqmgHTegDaAhHQK04Ntb9qDd1fZQoaAZHQKAeXn2ZiNNoB03oA2gIR0CtOHz4+KTCdX2UKGgGR0CgOyGbsniOaAdN6ANoCEdArTjqeI2wV3V9lChoBkdAm1giMglniGgHTegDaAhHQK1CJgy/KyR1fZQoaAZHQKDGA73fygBoB03oA2gIR0CtRaNR3u/ldX2UKGgGR0CgkivqkdmyaAdN6ANoCEdArUYHtnf2snV9lChoBkdAnyaQgcLjP2gHTegDaAhHQK1GqVKwpvx1fZQoaAZHQKCWTYpUgjhoB03oA2gIR0CtUoxjBl+WdX2UKGgGR0Ce2l4SpR4yaAdN6ANoCEdArVUAmsvIwXV9lChoBkdAoQBQZEUj9mgHTegDaAhHQK1VQ0sOG0x1fZQoaAZHQKCfwyprDZVoB03oA2gIR0CtVbOivgWKdX2UKGgGR0CdHs3Cbc46aAdN6ANoCEdArV7cuL74z3V9lChoBkdAoBvlpfx+a2gHTegDaAhHQK1hW3OObRZ1fZQoaAZHQKA3+aqjrRloB03oA2gIR0CtYZ9mpVCHdX2UKGgGR0CgXtXh4t6HaAdN6ANoCEdArWJCeqaPS3V9lChoBkdAn4A6nvUjLWgHTegDaAhHQK1vNhwVCX11fZQoaAZHQKBFjkJ8fFJoB03oA2gIR0CtcbWSlnAZdX2UKGgGR0CgwXeIdlunaAdN6ANoCEdArXH21MM7VHV9lChoBkdAnSLHuy/sV2gHTegDaAhHQK1yYfI0ZWJ1fZQoaAZHQKAYssf7rLRoB03oA2gIR0Cte7uVPepGdX2UKGgGR0CeyVoOQQtjaAdN6ANoCEdArX4+8brC33V9lChoBkdAoB86bx3FDWgHTegDaAhHQK1+hoN/e+F1fZQoaAZHQKCXTe1rqMZoB03oA2gIR0CtfvOfmLccdX2UKGgGR0CeAQ9kBjnWaAdN6ANoCEdArYwgLApKBnV9lChoBkdAnRP0rXlKb2gHTegDaAhHQK2OzoVVPvd1fZQoaAZHQJ+bf9P1tfpoB03oA2gIR0CtjxZaePJadX2UKGgGR0CdaVqesgdPaAdN6ANoCEdArY+EpuuRtHV9lChoBkdAnDB5r+Hae2gHTegDaAhHQK2Y6dQO4G51fZQoaAZHQJtlH6P8yetoB03oA2gIR0Ctm2h7VrhzdX2UKGgGR0Cg2kXmvGIbaAdN6ANoCEdArZuqbMHKOnV9lChoBkdAniD7XpW3jWgHTegDaAhHQK2cGaBqbjN1fZQoaAZHQKJQ4+/xlQNoB03oA2gIR0Ctp+7aIvaldX2UKGgGR0Ce/UB0IToMaAdN6ANoCEdAravT9jwx33V9lChoBkdAn4oM89wFT2gHTegDaAhHQK2sGB3A2yd1fZQoaAZHQKG3j7Qb+99oB03oA2gIR0CtrIWCuloEdX2UKGgGR0Cce9iosI3SaAdN6ANoCEdArbW8zbeuWHV9lChoBkdAoDVIsZpBX2gHTegDaAhHQK24PrP+n651fZQoaAZHQKFqe2H+IdloB03oA2gIR0CtuIKBNEgGdX2UKGgGR0Chb7QwK0D2aAdN6ANoCEdArbjr17IDHXV9lChoBkdAoK5rjkuHvmgHTegDaAhHQK3DULUCq6x1fZQoaAZHQKErVTTfBN5oB03oA2gIR0CtxyfRVp9JdX2UKGgGR0CeB5A31jAjaAdN6ANoCEdArceST4cm0HV9lChoBkdAnrRKy4Wk8GgHTegDaAhHQK3IOAAAAAB1fZQoaAZHQJ/q+ZAprk9oB03oA2gIR0Ct0mHjZL7GdX2UKGgGR0Cg8tYAsCkoaAdN6ANoCEdArdTWALApKHV9lChoBkdAnw212V3Ux2gHTegDaAhHQK3VG7NB4Ux1fZQoaAZHQKCSTSYw7DFoB03oA2gIR0Ct1YTcZccEdX2UKGgGR0ChDn9dE9dNaAdN6ANoCEdArd6GqJdjXnV9lChoBkdAoPhUhxHXmWgHTegDaAhHQK3h4brkbP11fZQoaAZHQKEb/876pHZoB03oA2gIR0Ct4kAs9SuRdX2UKGgGR0Ch4ebQC0WuaAdN6ANoCEdAreLZ6By0bHV9lChoBkdAodz1PSDyv2gHTegDaAhHQK3uyXgLqlh1fZQoaAZHQKEDD/FR51NoB03oA2gIR0Ct8UWZqmCRdX2UKGgGR0ChCeoybhFWaAdN6ANoCEdArfGJAbADaHV9lChoBkdAojfWNo8IRmgHTegDaAhHQK3x9qk/KQt1fZQoaAZHQKGGvq6e5FxoB03oA2gIR0Ct+zCEpRXPdX2UKGgGR0Cg8iRJ/XoUaAdN6ANoCEdArf269kBjnXV9lChoBkdAoMcQbADaG2gHTegDaAhHQK3+Aax5cC51fZQoaAZHQKCXIrjo6jpoB03oA2gIR0Ct/nGff4yodX2UKGgGR0CddZPkaMrFaAdN6ANoCEdArgtj30wrUnV9lChoBkdAn+xSwnpjc2gHTegDaAhHQK4N3xYq5LB1fZQoaAZHQJ1+9aJQ+EBoB03oA2gIR0CuDiPzOHFhdX2UKGgGR0CcZRscQyylaAdN6ANoCEdArg6UMw1zhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}