Upload model
Browse files- config.json +148 -0
- modeling_custom_head_xlm_roberta.py +76 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "C:/Users/algaddooa/ownCloud - [email protected]@owncloud.gwdg.de/MARPOR/manifestoberta/manifestoberta-xlm-roberta-56policy-topics-sentence-2024-1-1",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"CustomXLMRobertaModelForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoModelForSequenceClassification": "modeling_custom_head_xlm_roberta.CustomXLMRobertaModelForSequenceClassification"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 0,
|
| 11 |
+
"classifier_dropout": null,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"hidden_act": "gelu",
|
| 14 |
+
"hidden_dropout_prob": 0.1,
|
| 15 |
+
"hidden_size": 1024,
|
| 16 |
+
"id2label": {
|
| 17 |
+
"0": "101 - Foreign Special Relationships: Positive",
|
| 18 |
+
"1": "102 - Foreign Special Relationships: Negative",
|
| 19 |
+
"2": "103 - Anti-Imperialism",
|
| 20 |
+
"3": "104 - Military: Positive",
|
| 21 |
+
"4": "105 - Military: Negative",
|
| 22 |
+
"5": "106 - Peace",
|
| 23 |
+
"6": "107 - Internationalism: Positive",
|
| 24 |
+
"7": "108 - European Community/Union: Positive",
|
| 25 |
+
"8": "109 - Internationalism: Negative",
|
| 26 |
+
"9": "110 - European Community/Union: Negative",
|
| 27 |
+
"10": "201 - Freedom and Human Rights",
|
| 28 |
+
"11": "202 - Democracy",
|
| 29 |
+
"12": "203 - Constitutionalism: Positive",
|
| 30 |
+
"13": "204 - Constitutionalism: Negative",
|
| 31 |
+
"14": "301 - Federalism",
|
| 32 |
+
"15": "302 - Centralisation",
|
| 33 |
+
"16": "303 - Governmental and Administrative Efficiency",
|
| 34 |
+
"17": "304 - Political Corruption",
|
| 35 |
+
"18": "305 - Political Authority",
|
| 36 |
+
"19": "401 - Free Market Economy",
|
| 37 |
+
"20": "402 - Incentives",
|
| 38 |
+
"21": "403 - Market Regulation",
|
| 39 |
+
"22": "404 - Economic Planning",
|
| 40 |
+
"23": "405 - Corporatism/ Mixed Economy",
|
| 41 |
+
"24": "406 - Protectionism: Positive",
|
| 42 |
+
"25": "407 - Protectionism: Negative",
|
| 43 |
+
"26": "408 - Economic Goals",
|
| 44 |
+
"27": "409 - Keynesian Demand Management",
|
| 45 |
+
"28": "410 - Economic Growth: Positive",
|
| 46 |
+
"29": "411 - Technology and Infrastructure",
|
| 47 |
+
"30": "412 - Controlled Economy",
|
| 48 |
+
"31": "413 - Nationalisation",
|
| 49 |
+
"32": "414 - Economic Orthodoxy",
|
| 50 |
+
"33": "415 - Marxist Analysis: Positive",
|
| 51 |
+
"34": "416 - Anti-Growth Economy: Positive",
|
| 52 |
+
"35": "501 - Environmental Protection: Positive",
|
| 53 |
+
"36": "502 - Culture: Positive",
|
| 54 |
+
"37": "503 - Equality: Positive",
|
| 55 |
+
"38": "504 - Welfare State Expansion",
|
| 56 |
+
"39": "505 - Welfare State Limitation",
|
| 57 |
+
"40": "506 - Education Expansion",
|
| 58 |
+
"41": "507 - Education Limitation",
|
| 59 |
+
"42": "601 - National Way of Life: Positive",
|
| 60 |
+
"43": "602 - National Way of Life: Negative",
|
| 61 |
+
"44": "603 - Traditional Morality: Positive",
|
| 62 |
+
"45": "604 - Traditional Morality: Negative",
|
| 63 |
+
"46": "605 - Law and Order: Positive",
|
| 64 |
+
"47": "606 - Civic Mindedness: Positive",
|
| 65 |
+
"48": "607 - Multiculturalism: Positive",
|
| 66 |
+
"49": "608 - Multiculturalism: Negative",
|
| 67 |
+
"50": "701 - Labour Groups: Positive",
|
| 68 |
+
"51": "702 - Labour Groups: Negative",
|
| 69 |
+
"52": "703 - Agriculture and Farmers: Positive",
|
| 70 |
+
"53": "704 - Middle Class and Professional Groups",
|
| 71 |
+
"54": "705 - Underprivileged Minority Groups",
|
| 72 |
+
"55": "706 - Non-economic Demographic Groups"
|
| 73 |
+
},
|
| 74 |
+
"initializer_range": 0.02,
|
| 75 |
+
"intermediate_size": 4096,
|
| 76 |
+
"label2id": {
|
| 77 |
+
"101 - Foreign Special Relationships: Positive": 0,
|
| 78 |
+
"102 - Foreign Special Relationships: Negative": 1,
|
| 79 |
+
"103 - Anti-Imperialism": 2,
|
| 80 |
+
"104 - Military: Positive": 3,
|
| 81 |
+
"105 - Military: Negative": 4,
|
| 82 |
+
"106 - Peace": 5,
|
| 83 |
+
"107 - Internationalism: Positive": 6,
|
| 84 |
+
"108 - European Community/Union: Positive": 7,
|
| 85 |
+
"109 - Internationalism: Negative": 8,
|
| 86 |
+
"110 - European Community/Union: Negative": 9,
|
| 87 |
+
"201 - Freedom and Human Rights": 10,
|
| 88 |
+
"202 - Democracy": 11,
|
| 89 |
+
"203 - Constitutionalism: Positive": 12,
|
| 90 |
+
"204 - Constitutionalism: Negative": 13,
|
| 91 |
+
"301 - Federalism": 14,
|
| 92 |
+
"302 - Centralisation": 15,
|
| 93 |
+
"303 - Governmental and Administrative Efficiency": 16,
|
| 94 |
+
"304 - Political Corruption": 17,
|
| 95 |
+
"305 - Political Authority": 18,
|
| 96 |
+
"401 - Free Market Economy": 19,
|
| 97 |
+
"402 - Incentives": 20,
|
| 98 |
+
"403 - Market Regulation": 21,
|
| 99 |
+
"404 - Economic Planning": 22,
|
| 100 |
+
"405 - Corporatism/ Mixed Economy": 23,
|
| 101 |
+
"406 - Protectionism: Positive": 24,
|
| 102 |
+
"407 - Protectionism: Negative": 25,
|
| 103 |
+
"408 - Economic Goals": 26,
|
| 104 |
+
"409 - Keynesian Demand Management": 27,
|
| 105 |
+
"410 - Economic Growth: Positive": 28,
|
| 106 |
+
"411 - Technology and Infrastructure": 29,
|
| 107 |
+
"412 - Controlled Economy": 30,
|
| 108 |
+
"413 - Nationalisation": 31,
|
| 109 |
+
"414 - Economic Orthodoxy": 32,
|
| 110 |
+
"415 - Marxist Analysis: Positive": 33,
|
| 111 |
+
"416 - Anti-Growth Economy: Positive": 34,
|
| 112 |
+
"501 - Environmental Protection: Positive": 35,
|
| 113 |
+
"502 - Culture: Positive": 36,
|
| 114 |
+
"503 - Equality: Positive": 37,
|
| 115 |
+
"504 - Welfare State Expansion": 38,
|
| 116 |
+
"505 - Welfare State Limitation": 39,
|
| 117 |
+
"506 - Education Expansion": 40,
|
| 118 |
+
"507 - Education Limitation": 41,
|
| 119 |
+
"601 - National Way of Life: Positive": 42,
|
| 120 |
+
"602 - National Way of Life: Negative": 43,
|
| 121 |
+
"603 - Traditional Morality: Positive": 44,
|
| 122 |
+
"604 - Traditional Morality: Negative": 45,
|
| 123 |
+
"605 - Law and Order: Positive": 46,
|
| 124 |
+
"606 - Civic Mindedness: Positive": 47,
|
| 125 |
+
"607 - Multiculturalism: Positive": 48,
|
| 126 |
+
"608 - Multiculturalism: Negative": 49,
|
| 127 |
+
"701 - Labour Groups: Positive": 50,
|
| 128 |
+
"702 - Labour Groups: Negative": 51,
|
| 129 |
+
"703 - Agriculture and Farmers: Positive": 52,
|
| 130 |
+
"704 - Middle Class and Professional Groups": 53,
|
| 131 |
+
"705 - Underprivileged Minority Groups": 54,
|
| 132 |
+
"706 - Non-economic Demographic Groups": 55
|
| 133 |
+
},
|
| 134 |
+
"layer_norm_eps": 1e-05,
|
| 135 |
+
"max_position_embeddings": 514,
|
| 136 |
+
"model_type": "xlm-roberta",
|
| 137 |
+
"num_attention_heads": 16,
|
| 138 |
+
"num_hidden_layers": 24,
|
| 139 |
+
"output_past": true,
|
| 140 |
+
"pad_token_id": 1,
|
| 141 |
+
"position_embedding_type": "absolute",
|
| 142 |
+
"problem_type": "single_label_classification",
|
| 143 |
+
"torch_dtype": "float32",
|
| 144 |
+
"transformers_version": "4.24.0",
|
| 145 |
+
"type_vocab_size": 1,
|
| 146 |
+
"use_cache": true,
|
| 147 |
+
"vocab_size": 250002
|
| 148 |
+
}
|
modeling_custom_head_xlm_roberta.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import XLMRobertaForSequenceClassification, XLMRobertaConfig
|
| 2 |
+
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
|
| 3 |
+
from typing import Optional, Union, Tuple
|
| 4 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 5 |
+
import torch
|
| 6 |
+
from torch.nn import Linear
|
| 7 |
+
|
| 8 |
+
class CustomXLMRobertaModelForSequenceClassification(XLMRobertaForSequenceClassification):
|
| 9 |
+
config_class = XLMRobertaConfig
|
| 10 |
+
|
| 11 |
+
def __init__(self, config):
|
| 12 |
+
super().__init__(config)
|
| 13 |
+
|
| 14 |
+
self.final_classifier = Linear(config.hidden_size, config.num_labels)
|
| 15 |
+
self.init_weights()
|
| 16 |
+
|
| 17 |
+
def forward(
|
| 18 |
+
self,
|
| 19 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 20 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 21 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 22 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 23 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 24 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 25 |
+
labels: Optional[torch.LongTensor] = None,
|
| 26 |
+
output_attentions: Optional[bool] = None,
|
| 27 |
+
output_hidden_states: Optional[bool] = None,
|
| 28 |
+
return_dict: Optional[bool] = None,
|
| 29 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 30 |
+
|
| 31 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 32 |
+
outputs_sentence = self.roberta(input_ids,
|
| 33 |
+
attention_mask=attention_mask,
|
| 34 |
+
token_type_ids=token_type_ids,
|
| 35 |
+
position_ids=position_ids,
|
| 36 |
+
head_mask=head_mask,
|
| 37 |
+
inputs_embeds=inputs_embeds,
|
| 38 |
+
output_attentions=output_attentions,
|
| 39 |
+
output_hidden_states=output_hidden_states,
|
| 40 |
+
return_dict=True)
|
| 41 |
+
|
| 42 |
+
sequence_output_sentence = outputs_sentence["last_hidden_state"][:, 0, :]
|
| 43 |
+
|
| 44 |
+
logits = self.final_classifier(sequence_output_sentence)
|
| 45 |
+
|
| 46 |
+
loss = None
|
| 47 |
+
if labels is not None:
|
| 48 |
+
if self.config.problem_type is None:
|
| 49 |
+
if self.num_labels == 1:
|
| 50 |
+
self.config.problem_type = "regression"
|
| 51 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 52 |
+
self.config.problem_type = "single_label_classification"
|
| 53 |
+
else:
|
| 54 |
+
self.config.problem_type = "multi_label_classification"
|
| 55 |
+
|
| 56 |
+
if self.config.problem_type == "regression":
|
| 57 |
+
loss_fct = MSELoss()
|
| 58 |
+
if self.num_labels == 1:
|
| 59 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 60 |
+
else:
|
| 61 |
+
loss = loss_fct(logits, labels)
|
| 62 |
+
elif self.config.problem_type == "single_label_classification":
|
| 63 |
+
loss_fct = CrossEntropyLoss()
|
| 64 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 65 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 66 |
+
loss_fct = BCEWithLogitsLoss()
|
| 67 |
+
loss = loss_fct(logits, labels)
|
| 68 |
+
|
| 69 |
+
if not return_dict:
|
| 70 |
+
output = (logits,)
|
| 71 |
+
return ((loss,) + output) if loss is not None else output
|
| 72 |
+
|
| 73 |
+
return SequenceClassifierOutput(
|
| 74 |
+
loss=loss,
|
| 75 |
+
logits=logits
|
| 76 |
+
)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60d688198b405592c70a05b16d01d82e31c8283618419a3e4a86a21d6153e7a1
|
| 3 |
+
size 2240156029
|