mamun4105 commited on
Commit
4f6943c
·
1 Parent(s): f745cb4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 3.97 +/- 0.26
19
  name: mean_reward
20
  verified: false
21
  ---
@@ -38,7 +38,7 @@ python -m sample_factory.huggingface.load_from_hub -r mamun4105/rl_course_vizdoo
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m .home.salmamun.miniconda3.envs.hf.lib.python3.9.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
@@ -49,7 +49,7 @@ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m .home.salmamun.miniconda3.envs.hf.lib.python3.9.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 10.44 +/- 4.52
19
  name: mean_reward
20
  verified: false
21
  ---
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
 
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.