File size: 13,785 Bytes
4de6ab4 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ed268da6c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed268da6cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed268da6d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed268da6dd0>", "_build": "<function ActorCriticPolicy._build at 0x7ed268da6e60>", "forward": "<function ActorCriticPolicy.forward at 0x7ed268da6ef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed268da6f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed268da7010>", "_predict": "<function ActorCriticPolicy._predict at 0x7ed268da70a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed268da7130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed268da71c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed268da7250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ed268dac580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713872664587221516, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMLH75YPJo+46OFPVa7db4s5Yg8g0hBPQAAAAAAAAAAzREXvaliYj7WLRE+M0ySviPbyLxlXlI8AAAAAAAAAADACLQ9ezqEujIPUTOjyTYvOcScOlUpurMAAIA/AAAAAGbxY73N128+iDXXPfrPe76h5wC99SuGOQAAAAAAAAAAmvv8PHdGWT8Dlwy8DdOPvkY9PLshrjO9AAAAAAAAAAAjQXa+UbhBvaproLsXcWK64QypPr1MIzsAAIA/AAAAAFpxVb68888+UpKIPnMmpr6aBJY99ifGPAAAAAAAAAAA0zwOvl/3QD+Y9uM9hfWRvvUVur2q6EU9AAAAAAAAAACahye9w88rPwqfJj5gPY6+6QlGPQJchT0AAAAAAAAAADNruTv5rbA/t9dDPpsa5r6z51S7usP2uwAAAAAAAAAAmgngPB6sqT8tH2o+FK7Hvpho5DvmLr49AAAAAAAAAAAAYJ+8ciojPm6Qfz3MbkO+1N31PNGihj0AAAAAAAAAACBbQL5jJBM/jNwZPjLpl76isAU89qVvPQAAAAAAAAAAwJeLPXcjCT7PWgW+NUZqvjLI+ry6XnY9AAAAAAAAAACzIXc9YliRP046OT7/k8u+Zkf1PTuTJT0AAAAAAAAAAJqHkrzPLhG84zUNu0VqHTxnPnC9ePEIPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFNkN8VpKz2MAWyUS+aMAXSUR0CTcO+6Ae7udX2UKGgGR0BurfIOpbUxaAdNMwFoCEdAk3I3NTtLMHV9lChoBkdAcNt4FRpDeGgHTUIBaAhHQJNyQUN8VpN1fZQoaAZHQHJLDsD4gzRoB01yAWgIR0CTclZMtbs4dX2UKGgGR0Bwd5QFcIJJaAdNLAFoCEdAk3LPyoXKsHV9lChoBkdAcfoSOinHemgHTQQBaAhHQJNziPHT7VJ1fZQoaAZHQHDZQ9A5aNdoB00KAWgIR0CTdLbx3FDOdX2UKGgGR0BxDU7GNrCWaAdNQAFoCEdAk3S34bjtHHV9lChoBkdAcRAWWQfZEmgHTS4BaAhHQJN021y/9Hd1fZQoaAZHQHCcKTKT0QNoB01AAWgIR0CTdUrdWQwLdX2UKGgGR0ByFQxWT5fuaAdNNAFoCEdAk3a/z8P4EnV9lChoBkdAbzaOZLIxQGgHTRoBaAhHQJN3WkwevIR1fZQoaAZHQHG3aQaJhv1oB01vAWgIR0CTd4Ackt2+dX2UKGgGR0BxQ98E3bVSaAdL/WgIR0CTeLwMYuTSdX2UKGgGR0BxbWki2UjcaAdNZAFoCEdAk3ok8Rtgr3V9lChoBkdAb684OMERrmgHTWUBaAhHQJN6R+TeO4p1fZQoaAZHQHJcAAhje9BoB00WAWgIR0CTewSzgMtsdX2UKGgGR0Bt8H4yoGY8aAdNLwFoCEdAk3u1FH8TBnV9lChoBkdAb9Wgf2bobGgHTR0BaAhHQJN7xmJ3xF11fZQoaAZHQG5URpL26CloB00/AWgIR0CTfEAs052hdX2UKGgGR0ByOrwsoUi7aAdNHwFoCEdAk3ySKziS73V9lChoBkdAbn8tBfKISGgHTREBaAhHQJN9aNR3u/l1fZQoaAZHQG8/g31jAi5oB00eAWgIR0CTfbGOdXkpdX2UKGgGR0BxKCjqOcUeaAdNOAFoCEdAk351QAMlTnV9lChoBkdAcC+cZ9/jKmgHTS4BaAhHQJN+uX0Gu9x1fZQoaAZHQHCw9cbBGhFoB00hAWgIR0CTf88NhE0BdX2UKGgGR0Bwpd31SOzZaAdNFQFoCEdAk4Av07KaHHV9lChoBkdAbyrp3X7LuGgHTTsBaAhHQJOCu4YrJ8x1fZQoaAZHQG/6mu9vjwRoB00XAWgIR0CTgt6H0se5dX2UKGgGR0ByWEP3BYV7aAdNfgFoCEdAk4OEZaV2R3V9lChoBkdAcu8ipeeFtmgHTSgBaAhHQJODljy4FzN1fZQoaAZHQHCJfg3tKI1oB00WAWgIR0CTg8jPOY6XdX2UKGgGR0BycNkhA4XGaAdL/mgIR0CThDS4OMESdX2UKGgGR0ByAISRKYiQaAdNDgFoCEdAk4Q79ZRsM3V9lChoBkdAcLe2r4nF52gHTR4BaAhHQJOEnYywfQt1fZQoaAZHQGzHA4wRGtpoB00WAWgIR0CThSbBXS0CdX2UKGgGR0BulQZdfLLZaAdNHQFoCEdAk4YsXenAI3V9lChoBkdAcdS2OyVv/GgHTR8BaAhHQJOGfmuDBdl1fZQoaAZHQG8Wh5gPVd5oB01HAWgIR0CTiJl7MPjGdX2UKGgGR0Bw47H80k4WaAdNcwFoCEdAk4qMrupjt3V9lChoBkdAcJf9s7+1jWgHTUgBaAhHQJOK0rnTy8V1fZQoaAZHQF3Ry7PIGQloB03oA2gIR0CTjZlS0jTsdX2UKGgGR0Bxr3a/RE4OaAdNQQFoCEdAk44THwPRRnV9lChoBkdAb78mO2iL22gHTTABaAhHQJOOYelsP8R1fZQoaAZHQHCGsqFyq+9oB01GAWgIR0CTjocENe+mdX2UKGgGR0Bwrr3qRlpXaAdNHwFoCEdAk46qQRwqAnV9lChoBkdAcwve2uxKQWgHTUUBaAhHQJOPo55qubJ1fZQoaAZHQG/DIdlum79oB01TAWgIR0CTj/sPJ7swdX2UKGgGR0BynlhOP/70aAdNQQFoCEdAk5AUnw5NoXV9lChoBkdAcvfz90ihWmgHTSIBaAhHQJOQPN1QqI91fZQoaAZHQHFm58v24/hoB004AWgIR0CTkE/1xsEadX2UKGgGR0BweK+N96ToaAdN8AFoCEdAk6N/vKEFn3V9lChoBkdAcQrqFAVwgmgHTTcBaAhHQJOkQ3S8an91fZQoaAZHQHFngxzq8lJoB01bAWgIR0CTpPBS1maqdX2UKGgGR0BxY4pBomG/aAdNUQFoCEdAk6bY150KZ3V9lChoBkdAcOY42S+xnmgHTSIBaAhHQJOnPbah6B11fZQoaAZHQG033z19ORFoB00KAWgIR0CTqPoRqXWwdX2UKGgGR0BxI+vwEyLyaAdNPAFoCEdAk6pEBCD28XV9lChoBkdAcgYK1G9YfWgHTYYBaAhHQJOqb+ERJ3B1fZQoaAZHQHIEZ7HAAQxoB00wAWgIR0CTqnClabF1dX2UKGgGR0BxqKYWtU4raAdNDwFoCEdAk6qwi3XqaHV9lChoBkdAcPkzguRLb2gHTSABaAhHQJOrB3X7LuB1fZQoaAZHQHHby++M6zVoB01MAWgIR0CTq2+m3vx6dX2UKGgGR0BwCp1fVqetaAdNXAFoCEdAk6uNcry1/nV9lChoBkdAbmol8gIQe2gHTTQBaAhHQJOrtF/hESd1fZQoaAZHQHJBmWD6FdtoB00TAWgIR0CTq+PVurIYdX2UKGgGR0ByjjHMlkYoaAdNQAFoCEdAk6wow/PgN3V9lChoBkdAcuFwSrYGuGgHTXUBaAhHQJOtCdVea8Z1fZQoaAZHQGy0xoIv8IloB01AAWgIR0CTrbx/d69kdX2UKGgGR0BxitoIv8IiaAdNZQFoCEdAk69+fdyksXV9lChoBkdAcWr3N9ph4WgHTSoBaAhHQJOwLK3d9Dx1fZQoaAZHQHIvy5y2hIxoB015AWgIR0CTsq4FzMibdX2UKGgGR0BwWVw3o9s8aAdNKgFoCEdAk7PlNxlxwXV9lChoBkdAcnJNoJzDGmgHTTABaAhHQJO0doXbdrR1fZQoaAZHQHMQbfk3juNoB00QAWgIR0CTtIU1AJLNdX2UKGgGR0Bwa+mEXcgyaAdNPwFoCEdAk7TFzMibD3V9lChoBkdAcB+qXnhbW2gHTUUBaAhHQJO00u8K5TZ1fZQoaAZHQHLRiBGx2StoB00uAWgIR0CTtNA3T/hmdX2UKGgGR0ByW/ULDye7aAdNKwFoCEdAk7UfOMVDbHV9lChoBkdAckygUlAu7GgHTRgBaAhHQJO1WNuLrHF1fZQoaAZHQHC/PgWJrL1oB00yAWgIR0CTtW5BTn7pdX2UKGgGR0Bx0g4sEq2CaAdNiwFoCEdAk7W/+CK77XV9lChoBkdAcdtZsbedkWgHTUcBaAhHQJO4bX4CZF51fZQoaAZHQHFm3g5zYEpoB014AWgIR0CTuSQTmGM5dX2UKGgGR0BLNK6nR9gGaAdLmWgIR0CTuSzDGcWkdX2UKGgGR0BwyNmZmZmaaAdNPwFoCEdAk7o3VXmvGXV9lChoBkdAcCJqQiiZfGgHTUQBaAhHQJO7HZ6D5CZ1fZQoaAZHQG7djfm9xqBoB00JAWgIR0CTvPp8neBQdX2UKGgGR0BvU/18LKFJaAdNDwFoCEdAk71ASeyzHHV9lChoBkdAcRByFfzBh2gHTRIBaAhHQJO93Ssr/bV1fZQoaAZHQHBvOogmqo9oB01EAWgIR0CTvesd1dPddX2UKGgGR0Bu8YPwuuifaAdNDgFoCEdAk74nU6PsA3V9lChoBkdAb7d9kz41xmgHTRkBaAhHQJO+NMwlByF1fZQoaAZHQG7O4PPLPldoB00RAWgIR0CTv0yOJcgRdX2UKGgGR0BwevHbRF7VaAdNUwFoCEdAk7+2GM4tH3V9lChoBkdAbSmWSEDhcmgHTVMBaAhHQJPBh+9alk91fZQoaAZHQHIDmXgLqlhoB01rAWgIR0CTwmv99+gEdX2UKGgGR0BvGYBFNL13aAdNJQFoCEdAk8RUpNKywHV9lChoBkdAcZ48kD6nBWgHTR8BaAhHQJPFLb349HN1fZQoaAZHQHJOVy3kPtloB00oAWgIR0CTxXtHQQcxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |