Fill-Mask
Transformers
PyTorch
Safetensors
bert
custom_code
robinzixuan commited on
Commit
7155405
·
verified ·
1 Parent(s): 6760c4b

Upload configuration_bert.py

Browse files
Files changed (1) hide show
  1. configuration_bert.py +154 -0
configuration_bert.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """BERT model configuration"""
17
+
18
+ from collections import OrderedDict
19
+ from typing import Mapping
20
+
21
+ from ...configuration_utils import PretrainedConfig
22
+ from ...onnx import OnnxConfig
23
+ from ...utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+ BertConfig.register_for_auto_class()
28
+
29
+
30
+ class BertConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
33
+ instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the BERT
35
+ [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 30522):
43
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
45
+ hidden_size (`int`, *optional*, defaults to 768):
46
+ Dimensionality of the encoder layers and the pooler layer.
47
+ num_hidden_layers (`int`, *optional*, defaults to 12):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 12):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ intermediate_size (`int`, *optional*, defaults to 3072):
52
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
53
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
54
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
55
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
56
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
57
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
58
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
59
+ The dropout ratio for the attention probabilities.
60
+ max_position_embeddings (`int`, *optional*, defaults to 512):
61
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
62
+ just in case (e.g., 512 or 1024 or 2048).
63
+ type_vocab_size (`int`, *optional*, defaults to 2):
64
+ The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
68
+ The epsilon used by the layer normalization layers.
69
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
70
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
71
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
72
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
73
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
74
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
75
+ is_decoder (`bool`, *optional*, defaults to `False`):
76
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
77
+ use_cache (`bool`, *optional*, defaults to `True`):
78
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
79
+ relevant if `config.is_decoder=True`.
80
+ classifier_dropout (`float`, *optional*):
81
+ The dropout ratio for the classification head.
82
+
83
+ Examples:
84
+
85
+ ```python
86
+ >>> from transformers import BertConfig, BertModel
87
+
88
+ >>> # Initializing a BERT google-bert/bert-base-uncased style configuration
89
+ >>> configuration = BertConfig()
90
+
91
+ >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
92
+ >>> model = BertModel(configuration)
93
+
94
+ >>> # Accessing the model configuration
95
+ >>> configuration = model.config
96
+ ```"""
97
+
98
+ model_type = "bert"
99
+
100
+ def __init__(
101
+ self,
102
+ vocab_size=30522,
103
+ hidden_size=768,
104
+ num_hidden_layers=12,
105
+ num_attention_heads=12,
106
+ intermediate_size=3072,
107
+ hidden_act="gelu",
108
+ hidden_dropout_prob=0.1,
109
+ attention_probs_dropout_prob=0.1,
110
+ max_position_embeddings=512,
111
+ type_vocab_size=2,
112
+ initializer_range=0.02,
113
+ layer_norm_eps=1e-12,
114
+ pad_token_id=0,
115
+ position_embedding_type="absolute",
116
+ use_cache=True,
117
+ classifier_dropout=None,
118
+ attn_implementation=None,
119
+ **kwargs,
120
+ ):
121
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
122
+
123
+ self.vocab_size = vocab_size
124
+ self.hidden_size = hidden_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.hidden_act = hidden_act
128
+ self.intermediate_size = intermediate_size
129
+ self.hidden_dropout_prob = hidden_dropout_prob
130
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.type_vocab_size = type_vocab_size
133
+ self.initializer_range = initializer_range
134
+ self.layer_norm_eps = layer_norm_eps
135
+ self.position_embedding_type = position_embedding_type
136
+ self.use_cache = use_cache
137
+ self.classifier_dropout = classifier_dropout
138
+ self.attn_implementation = attn_implementation
139
+
140
+
141
+ class BertOnnxConfig(OnnxConfig):
142
+ @property
143
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
144
+ if self.task == "multiple-choice":
145
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
146
+ else:
147
+ dynamic_axis = {0: "batch", 1: "sequence"}
148
+ return OrderedDict(
149
+ [
150
+ ("input_ids", dynamic_axis),
151
+ ("attention_mask", dynamic_axis),
152
+ ("token_type_ids", dynamic_axis),
153
+ ]
154
+ )