Upload configuration_opt.py
Browse files- configuration_opt.py +145 -0
configuration_opt.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""OPT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class OPTConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
|
27 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
28 |
+
defaults will yield a similar configuration to that of the OPT
|
29 |
+
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 50272):
|
37 |
+
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`OPTModel`]
|
39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
40 |
+
Dimensionality of the layers and the pooler layer.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
42 |
+
Number of decoder layers.
|
43 |
+
ffn_dim (`int`, *optional*, defaults to 3072):
|
44 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
46 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
47 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
49 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
50 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
51 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
52 |
+
just in case (e.g., 512 or 1024 or 2048).
|
53 |
+
do_layer_norm_before (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether to perform layer normalization before the attention block.
|
55 |
+
word_embed_proj_dim (`int`, *optional*):
|
56 |
+
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
|
57 |
+
`hidden_size`.
|
58 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio for the attention probabilities.
|
62 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
63 |
+
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
64 |
+
details.
|
65 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
69 |
+
enable_bias (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not if the linear layers in the attention blocks should use the bias term.
|
71 |
+
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not if the layer norms should have learnable parameters.
|
73 |
+
|
74 |
+
Example:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import OPTConfig, OPTModel
|
78 |
+
|
79 |
+
>>> # Initializing a OPT facebook/opt-large style configuration
|
80 |
+
>>> configuration = OPTConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
|
83 |
+
>>> model = OPTModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```"""
|
88 |
+
|
89 |
+
model_type = "opt"
|
90 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vocab_size=50272,
|
95 |
+
hidden_size=768,
|
96 |
+
num_hidden_layers=12,
|
97 |
+
ffn_dim=3072,
|
98 |
+
max_position_embeddings=2048,
|
99 |
+
do_layer_norm_before=True,
|
100 |
+
_remove_final_layer_norm=False,
|
101 |
+
word_embed_proj_dim=None,
|
102 |
+
dropout=0.1,
|
103 |
+
attention_dropout=0.0,
|
104 |
+
num_attention_heads=12,
|
105 |
+
activation_function="relu",
|
106 |
+
layerdrop=0.0,
|
107 |
+
init_std=0.02,
|
108 |
+
use_cache=True,
|
109 |
+
pad_token_id=1,
|
110 |
+
bos_token_id=2,
|
111 |
+
eos_token_id=2,
|
112 |
+
enable_bias=True,
|
113 |
+
layer_norm_elementwise_affine=True,
|
114 |
+
attn_implementation='eager',
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
super().__init__(
|
118 |
+
pad_token_id=pad_token_id,
|
119 |
+
bos_token_id=bos_token_id,
|
120 |
+
eos_token_id=eos_token_id,
|
121 |
+
**kwargs,
|
122 |
+
)
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.num_attention_heads = num_attention_heads
|
126 |
+
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
|
127 |
+
self.ffn_dim = ffn_dim
|
128 |
+
self.hidden_size = hidden_size
|
129 |
+
self.num_hidden_layers = num_hidden_layers
|
130 |
+
self.dropout = dropout
|
131 |
+
self.attention_dropout = attention_dropout
|
132 |
+
self.activation_function = activation_function
|
133 |
+
self.init_std = init_std
|
134 |
+
self.layerdrop = layerdrop
|
135 |
+
self.use_cache = use_cache
|
136 |
+
self.do_layer_norm_before = do_layer_norm_before
|
137 |
+
# We keep these variables at `True` for backward compatibility.
|
138 |
+
self.enable_bias = enable_bias
|
139 |
+
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine
|
140 |
+
|
141 |
+
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
|
142 |
+
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
143 |
+
# see https://github.com/facebookresearch/metaseq/pull/164
|
144 |
+
self._remove_final_layer_norm = _remove_final_layer_norm
|
145 |
+
self.attn_implementation = attn_implementation
|