File size: 2,037 Bytes
35e87dd bcfce72 35e87dd 2068eeb 35e87dd 2068eeb 35e87dd 2068eeb 35e87dd 5f0a0c4 2068eeb 31e99a6 39ddbca 35e87dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: wav2vec2_capstone
results: []
datasets:
- mozilla-foundation/common_voice_16_1
language:
- en
- ca
- rw
- be
- eo
- de
- fr
- ka
- es
- lg
- sw
- fa
- it
- mh
- zh
- ba
- ta
- ru
- eu
- th
- pt
- pl
- ja
pipeline_tag: audio-classification
---
# WAV2VEC2_CAPSTONE_MODEL
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a subset of the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3952
- Accuracy: 0.9098
- F1 score: 0.9097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 0.9339 | 1.0 | 776 | 1.4214 | 0.7162 | 0.7094 |
| 0.5663 | 2.0 | 1552 | 1.0182 | 0.8318 | 0.8277 |
| 0.4408 | 3.0 | 2328 | 0.6117 | 0.8795 | 0.8784 |
| 0.3521 | 4.0 | 3105 | 0.5092 | 0.8998 | 0.9001 |
| 0.2305 | 5.0 | 3881 | 0.3896 | 0.9004 | 0.9013 |
| 0.1219 | 6.0 | 4657 | 0.3096 | 0.9196 | 0.9194 |
| 0.0672 | 6.99 | 3591 | 0.3952 | 0.9098 | 0.9097 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0 |