queue_detection

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1249
  • Map: 0.9571
  • Map 50: 0.9901
  • Map 75: 0.9844
  • Map Small: -1.0
  • Map Medium: 0.3322
  • Map Large: 0.9614
  • Mar 1: 0.5052
  • Mar 10: 0.9726
  • Mar 100: 0.9733
  • Mar Small: -1.0
  • Mar Medium: 0.3654
  • Mar Large: 0.9759
  • Map Cashier: 0.9657
  • Mar 100 Cashier: 0.9777
  • Map Cx: 0.9486
  • Mar 100 Cx: 0.969

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Cashier Mar 100 Cashier Map Cx Mar 100 Cx
No log 1.0 218 1.6511 0.1028 0.2445 0.079 -1.0 0.0 0.1036 0.105 0.4632 0.6421 -1.0 0.0 0.6464 0.1151 0.6993 0.0905 0.5848
No log 2.0 436 1.2010 0.3717 0.5667 0.4222 -1.0 0.0003 0.3749 0.3095 0.6671 0.7472 -1.0 0.0071 0.754 0.4302 0.8025 0.3132 0.6919
2.8665 3.0 654 0.9101 0.5265 0.7814 0.6068 -1.0 0.0 0.5298 0.3399 0.7167 0.7588 -1.0 0.0 0.7642 0.6719 0.8041 0.3811 0.7136
2.8665 4.0 872 0.7512 0.6528 0.9101 0.7828 -1.0 0.0453 0.6571 0.3744 0.7556 0.78 -1.0 0.0577 0.7856 0.7274 0.8003 0.5782 0.7597
0.8677 5.0 1090 0.7338 0.6431 0.9366 0.7893 -1.0 0.0381 0.6472 0.3563 0.7437 0.7641 -1.0 0.1773 0.7672 0.6835 0.7876 0.6026 0.7406
0.8677 6.0 1308 0.6059 0.7148 0.9548 0.8683 0.0 0.0207 0.7205 0.3998 0.783 0.7947 0.0 0.1038 0.8001 0.7552 0.8218 0.6744 0.7677
0.6584 7.0 1526 0.5631 0.7425 0.9666 0.8883 -1.0 0.0418 0.7475 0.4104 0.809 0.8218 -1.0 0.1227 0.8266 0.7871 0.8501 0.698 0.7935
0.6584 8.0 1744 0.5143 0.7573 0.9724 0.9071 -1.0 0.084 0.7621 0.4178 0.8205 0.8286 -1.0 0.1643 0.8332 0.782 0.8544 0.7326 0.8028
0.6584 9.0 1962 0.5286 0.7525 0.9715 0.9094 -1.0 0.0377 0.7577 0.4114 0.8123 0.8209 -1.0 0.0962 0.8261 0.809 0.8672 0.696 0.7747
0.5455 10.0 2180 0.4969 0.7716 0.9762 0.9247 0.0 0.0586 0.7759 0.4247 0.8186 0.8268 0.0 0.1444 0.8306 0.8082 0.8532 0.735 0.8005
0.5455 11.0 2398 0.4934 0.7701 0.97 0.9216 0.0 0.0231 0.779 0.4245 0.8256 0.8403 0.0 0.0676 0.8499 0.8059 0.8694 0.7343 0.8112
0.5034 12.0 2616 0.4560 0.7917 0.9764 0.9315 0.0 0.0278 0.7974 0.4331 0.8416 0.8521 0.0 0.1542 0.8568 0.8305 0.8874 0.753 0.8168
0.5034 13.0 2834 0.4293 0.8 0.9814 0.9299 -1.0 0.0552 0.8042 0.4353 0.8556 0.8627 -1.0 0.15 0.8664 0.85 0.8956 0.7499 0.8297
0.4705 14.0 3052 0.3860 0.8269 0.9848 0.9404 -1.0 0.0996 0.8328 0.4497 0.8701 0.876 -1.0 0.1969 0.881 0.8573 0.9017 0.7965 0.8502
0.4705 15.0 3270 0.4005 0.8193 0.9764 0.9476 0.0 0.0535 0.8277 0.4467 0.8643 0.8703 0.0 0.1806 0.8771 0.8521 0.9021 0.7864 0.8384
0.4705 16.0 3488 0.3911 0.813 0.9827 0.9434 -1.0 0.1665 0.8177 0.4442 0.8633 0.8712 -1.0 0.3929 0.875 0.8513 0.9011 0.7748 0.8413
0.4375 17.0 3706 0.3538 0.8352 0.9871 0.9687 -1.0 0.1586 0.8391 0.4533 0.8801 0.8832 -1.0 0.2423 0.8867 0.8697 0.9096 0.8006 0.8569
0.4375 18.0 3924 0.3740 0.8233 0.9867 0.9561 -1.0 0.1498 0.827 0.4492 0.8731 0.8774 -1.0 0.2333 0.8801 0.8532 0.9028 0.7935 0.852
0.4093 19.0 4142 0.3847 0.8151 0.9831 0.9572 -1.0 0.2685 0.8213 0.4446 0.8628 0.8662 -1.0 0.3286 0.8717 0.863 0.907 0.7672 0.8254
0.4093 20.0 4360 0.3744 0.8148 0.9869 0.9585 -1.0 0.109 0.8196 0.4464 0.8659 0.8716 -1.0 0.1458 0.8762 0.8403 0.8967 0.7894 0.8466
0.4047 21.0 4578 0.3521 0.8355 0.9879 0.9669 -1.0 0.1021 0.8414 0.4537 0.8797 0.8847 -1.0 0.1773 0.8887 0.8627 0.9097 0.8083 0.8597
0.4047 22.0 4796 0.3752 0.8357 0.9798 0.9508 0.0 0.1229 0.8447 0.4572 0.8752 0.8787 0.0 0.1676 0.8874 0.866 0.9047 0.8054 0.8527
0.3804 23.0 5014 0.3472 0.8435 0.9865 0.9601 -1.0 0.1067 0.848 0.4574 0.8844 0.8893 -1.0 0.2214 0.8934 0.8729 0.9158 0.8142 0.8627
0.3804 24.0 5232 0.3095 0.8554 0.9881 0.9711 -1.0 0.0987 0.8604 0.4696 0.8963 0.9001 -1.0 0.1727 0.9042 0.8888 0.9297 0.8221 0.8706
0.3804 25.0 5450 0.3470 0.8389 0.9882 0.9602 -1.0 0.1231 0.843 0.4527 0.8786 0.881 -1.0 0.175 0.8858 0.8827 0.9194 0.7952 0.8426
0.3534 26.0 5668 0.3446 0.8281 0.9889 0.9618 0.0 0.1064 0.8336 0.4528 0.8751 0.8784 0.0 0.22 0.8828 0.8574 0.9055 0.7988 0.8512
0.3534 27.0 5886 0.3234 0.844 0.9881 0.9593 -1.0 0.1256 0.8493 0.4591 0.8856 0.8881 -1.0 0.18 0.8933 0.8751 0.9161 0.8129 0.8601
0.3461 28.0 6104 0.2976 0.862 0.9881 0.9588 -1.0 0.1683 0.8664 0.47 0.8979 0.9015 -1.0 0.2083 0.9054 0.8989 0.9344 0.825 0.8685
0.3461 29.0 6322 0.2960 0.8607 0.9891 0.9744 -1.0 0.1628 0.8649 0.4662 0.9 0.9031 -1.0 0.26 0.9058 0.891 0.9311 0.8304 0.875
0.344 30.0 6540 0.3070 0.8599 0.9881 0.9694 -1.0 0.1578 0.8648 0.4628 0.8975 0.8992 -1.0 0.2 0.9035 0.8877 0.9233 0.832 0.8751
0.344 31.0 6758 0.3176 0.852 0.9864 0.97 0.0 0.0895 0.859 0.462 0.8915 0.8934 0.0 0.1538 0.8996 0.8791 0.9194 0.8249 0.8675
0.344 32.0 6976 0.3198 0.8478 0.9881 0.963 -1.0 0.1354 0.8527 0.4637 0.8891 0.8919 -1.0 0.2143 0.8967 0.8859 0.925 0.8097 0.8588
0.3308 33.0 7194 0.3002 0.8564 0.989 0.9708 -1.0 0.1237 0.8609 0.463 0.8954 0.8969 -1.0 0.1636 0.9011 0.8887 0.9251 0.8241 0.8688
0.3308 34.0 7412 0.2953 0.8659 0.9891 0.9737 -1.0 0.1593 0.8716 0.471 0.9014 0.9033 -1.0 0.2393 0.9073 0.8934 0.9261 0.8385 0.8805
0.321 35.0 7630 0.2858 0.8733 0.9873 0.9703 -1.0 0.1392 0.8801 0.4696 0.9071 0.9098 -1.0 0.1861 0.916 0.8998 0.9346 0.8468 0.8849
0.321 36.0 7848 0.2604 0.8845 0.9889 0.9716 -1.0 0.1392 0.8895 0.4769 0.9175 0.9195 -1.0 0.1818 0.9237 0.9109 0.9427 0.858 0.8963
0.3074 37.0 8066 0.3035 0.8609 0.987 0.9704 0.0 0.096 0.8695 0.4672 0.8995 0.9005 0.0 0.1733 0.9077 0.8853 0.9234 0.8365 0.8777
0.3074 38.0 8284 0.2746 0.8641 0.9894 0.977 -1.0 0.0994 0.8686 0.4711 0.9035 0.9053 -1.0 0.2167 0.9083 0.8866 0.9246 0.8416 0.886
0.2989 39.0 8502 0.2851 0.864 0.9894 0.9684 -1.0 0.1414 0.8703 0.4702 0.9033 0.904 -1.0 0.24 0.9083 0.8873 0.9265 0.8407 0.8815
0.2989 40.0 8720 0.2456 0.8843 0.9896 0.9771 -1.0 0.1205 0.8897 0.4798 0.9172 0.9178 -1.0 0.2062 0.923 0.9189 0.946 0.8496 0.8895
0.2989 41.0 8938 0.2567 0.8777 0.9897 0.9742 -1.0 0.162 0.8843 0.4771 0.9134 0.9136 -1.0 0.2094 0.9188 0.8967 0.9335 0.8586 0.8936
0.2782 42.0 9156 0.2444 0.8858 0.9897 0.9779 -1.0 0.2728 0.8918 0.4768 0.9187 0.9189 -1.0 0.3885 0.923 0.9172 0.9496 0.8544 0.8882
0.2782 43.0 9374 0.2389 0.8879 0.9899 0.9793 -1.0 0.1582 0.8934 0.4798 0.9199 0.9204 -1.0 0.2 0.9249 0.9142 0.9448 0.8617 0.896
0.2694 44.0 9592 0.2401 0.8962 0.9896 0.9783 -1.0 0.1936 0.9007 0.481 0.9255 0.9263 -1.0 0.2227 0.93 0.9183 0.9471 0.8742 0.9055
0.2694 45.0 9810 0.2550 0.8906 0.9895 0.9801 0.0 0.224 0.8969 0.4784 0.9219 0.923 0.0 0.2625 0.9284 0.9153 0.9463 0.8659 0.8996
0.2592 46.0 10028 0.2364 0.8963 0.9893 0.9776 0.0 0.1886 0.9016 0.4845 0.9282 0.9291 0.0 0.2615 0.9333 0.9224 0.9512 0.8703 0.9069
0.2592 47.0 10246 0.2435 0.8838 0.9871 0.9719 0.0 0.215 0.889 0.4792 0.92 0.921 0.0 0.2833 0.9246 0.9062 0.939 0.8614 0.903
0.2592 48.0 10464 0.2241 0.9014 0.9899 0.9836 -1.0 0.2242 0.9065 0.4842 0.9326 0.9333 -1.0 0.25 0.9366 0.9184 0.9493 0.8844 0.9172
0.25 49.0 10682 0.2348 0.8975 0.9899 0.9773 0.0 0.3675 0.9037 0.483 0.9308 0.931 0.0 0.39 0.9369 0.9166 0.9463 0.8784 0.9156
0.25 50.0 10900 0.2374 0.895 0.9896 0.9734 -1.0 0.2121 0.8994 0.4789 0.9266 0.9274 -1.0 0.3 0.9325 0.9135 0.943 0.8765 0.9118
0.2505 51.0 11118 0.1953 0.9169 0.99 0.9895 -1.0 0.2485 0.9218 0.4934 0.9467 0.9472 -1.0 0.2833 0.9498 0.9326 0.9596 0.9012 0.9348
0.2505 52.0 11336 0.2362 0.9006 0.99 0.9787 -1.0 0.2266 0.9066 0.4818 0.9303 0.931 -1.0 0.3423 0.9359 0.9319 0.9552 0.8694 0.9069
0.2291 53.0 11554 0.2253 0.9052 0.9891 0.9735 -1.0 0.1798 0.9126 0.4885 0.9326 0.9339 -1.0 0.2225 0.9403 0.9298 0.9528 0.8807 0.9151
0.2291 54.0 11772 0.2214 0.9093 0.9898 0.9822 -1.0 0.2074 0.9132 0.4883 0.9365 0.9372 -1.0 0.2192 0.9416 0.9322 0.9572 0.8864 0.9172
0.2291 55.0 11990 0.2088 0.9133 0.99 0.9848 -1.0 0.2959 0.918 0.4882 0.9416 0.9417 -1.0 0.3333 0.9437 0.934 0.9586 0.8926 0.9247
0.2323 56.0 12208 0.2029 0.9127 0.9897 0.9789 0.0 0.1756 0.9168 0.4915 0.9394 0.9406 0.0 0.24 0.9455 0.9382 0.961 0.8872 0.9201
0.2323 57.0 12426 0.2137 0.9074 0.99 0.9849 -1.0 0.2304 0.9101 0.488 0.9359 0.9362 -1.0 0.25 0.9401 0.9335 0.9573 0.8813 0.9151
0.2114 58.0 12644 0.1903 0.9231 0.9899 0.9841 -1.0 0.1404 0.9299 0.4932 0.9463 0.9466 -1.0 0.2077 0.9513 0.947 0.9664 0.8992 0.9269
0.2114 59.0 12862 0.1921 0.9211 0.99 0.9841 0.0 0.2628 0.9254 0.4942 0.9439 0.945 0.0 0.305 0.9487 0.9453 0.9645 0.8969 0.9255
0.2076 60.0 13080 0.1737 0.9335 0.99 0.984 -1.0 0.2575 0.9382 0.4982 0.9559 0.9563 -1.0 0.3 0.959 0.9592 0.975 0.9078 0.9376
0.2076 61.0 13298 0.1795 0.9272 0.99 0.9807 -1.0 0.2635 0.9305 0.4958 0.9502 0.9513 -1.0 0.31 0.9548 0.9488 0.9661 0.9057 0.9365
0.2086 62.0 13516 0.1887 0.9266 0.9901 0.9847 0.0 0.2762 0.9321 0.493 0.95 0.9507 0.0 0.3083 0.9547 0.9502 0.969 0.9029 0.9323
0.2086 63.0 13734 0.1734 0.9348 0.9901 0.9859 -1.0 0.2761 0.9397 0.4978 0.9581 0.9588 -1.0 0.315 0.9613 0.9517 0.9718 0.9178 0.9458
0.2086 64.0 13952 0.1788 0.9374 0.9899 0.9843 0.0 0.2255 0.9417 0.4992 0.9589 0.9592 0.0 0.2417 0.9643 0.9573 0.9759 0.9174 0.9424
0.1951 65.0 14170 0.1665 0.9374 0.99 0.985 -1.0 0.2792 0.9424 0.4987 0.9602 0.9607 -1.0 0.2909 0.9638 0.9537 0.9734 0.9212 0.948
0.1951 66.0 14388 0.1813 0.933 0.99 0.9834 0.0 0.2715 0.9369 0.4979 0.9549 0.9558 0.0 0.2944 0.9601 0.9521 0.9727 0.9138 0.9388
0.1904 67.0 14606 0.1797 0.9347 0.9894 0.9798 0.0 0.2227 0.9389 0.4961 0.9534 0.9547 0.0 0.2346 0.9602 0.9585 0.9737 0.9109 0.9357
0.1904 68.0 14824 0.1792 0.9321 0.9897 0.984 0.0 0.2146 0.9378 0.4954 0.9523 0.9532 0.0 0.2633 0.9582 0.9523 0.9697 0.9119 0.9368
0.186 69.0 15042 0.1472 0.9461 0.9901 0.9843 -1.0 0.2637 0.9524 0.5018 0.9665 0.9673 -1.0 0.3143 0.9708 0.9595 0.9774 0.9327 0.9573
0.186 70.0 15260 0.1736 0.931 0.9899 0.9842 -1.0 0.269 0.9352 0.4961 0.9538 0.9543 -1.0 0.2821 0.9581 0.9443 0.9654 0.9178 0.9432
0.186 71.0 15478 0.1550 0.9481 0.99 0.9835 -1.0 0.2275 0.9532 0.5019 0.9671 0.9678 -1.0 0.3321 0.9723 0.9601 0.9771 0.9361 0.9584
0.178 72.0 15696 0.1609 0.9455 0.99 0.9849 -1.0 0.2252 0.951 0.5004 0.9642 0.9652 -1.0 0.2731 0.969 0.9614 0.9768 0.9296 0.9535
0.178 73.0 15914 0.1482 0.9416 0.9901 0.9843 0.0 0.2421 0.947 0.5025 0.9627 0.9639 0.0 0.2967 0.9684 0.9554 0.9751 0.9278 0.9527
0.1822 74.0 16132 0.1403 0.9471 0.995 0.9832 -1.0 0.6037 0.9486 0.5016 0.9665 0.9675 -1.0 0.7182 0.969 0.9657 0.9787 0.9285 0.9562
0.1822 75.0 16350 0.1673 0.9424 0.9901 0.9845 -1.0 0.2102 0.9452 0.4995 0.9619 0.9628 -1.0 0.3667 0.9656 0.9615 0.976 0.9232 0.9496
0.1707 76.0 16568 0.1508 0.9457 0.9885 0.9816 -1.0 0.1736 0.9543 0.5016 0.9636 0.9641 -1.0 0.1971 0.9705 0.9577 0.9745 0.9338 0.9538
0.1707 77.0 16786 0.1395 0.9501 0.9898 0.9839 -1.0 0.1955 0.9581 0.5034 0.9681 0.9687 -1.0 0.2324 0.9745 0.9667 0.9809 0.9334 0.9566
0.1655 78.0 17004 0.1451 0.9502 0.99 0.9887 0.0 0.3398 0.9525 0.5042 0.97 0.9702 0.0 0.3667 0.9726 0.9611 0.9771 0.9393 0.9632
0.1655 79.0 17222 0.1654 0.9385 0.9949 0.9889 -1.0 0.5696 0.9406 0.4997 0.9592 0.9599 -1.0 0.6625 0.9627 0.9582 0.9724 0.9188 0.9474
0.1655 80.0 17440 0.1388 0.9536 0.99 0.9844 -1.0 0.2026 0.9602 0.5051 0.9689 0.9694 -1.0 0.2536 0.9739 0.9647 0.979 0.9425 0.9599
0.164 81.0 17658 0.1296 0.957 0.9901 0.9894 -1.0 0.2818 0.9625 0.505 0.9723 0.9729 -1.0 0.3042 0.9767 0.9681 0.9801 0.946 0.9657
0.164 82.0 17876 0.1309 0.9519 0.9901 0.9847 -1.0 0.2714 0.9584 0.5047 0.9707 0.9709 -1.0 0.3 0.9746 0.9635 0.9791 0.9403 0.9627
0.1556 83.0 18094 0.1295 0.9564 0.9901 0.9839 -1.0 0.2769 0.9594 0.505 0.9729 0.9731 -1.0 0.2833 0.9767 0.9644 0.981 0.9483 0.9653
0.1556 84.0 18312 0.1259 0.9572 0.9899 0.9846 0.0 0.2512 0.963 0.5059 0.973 0.9736 0.0 0.2786 0.9783 0.9671 0.9812 0.9473 0.966
0.1436 85.0 18530 0.1465 0.9517 0.99 0.9842 -1.0 0.2796 0.9544 0.5025 0.9679 0.9685 -1.0 0.3 0.972 0.9611 0.9762 0.9423 0.9608
0.1436 86.0 18748 0.1230 0.9577 0.9899 0.9847 -1.0 0.3562 0.9618 0.5064 0.9733 0.9735 -1.0 0.3773 0.9755 0.9689 0.9826 0.9465 0.9644
0.1436 87.0 18966 0.1319 0.9608 0.99 0.9823 0.0 0.3379 0.967 0.506 0.9741 0.9752 0.0 0.38 0.9805 0.9695 0.9814 0.952 0.969
0.1514 88.0 19184 0.1253 0.9554 0.9901 0.985 0.0 0.262 0.9628 0.5063 0.9725 0.9727 0.0 0.3231 0.9765 0.9624 0.9782 0.9484 0.9673
0.1514 89.0 19402 0.1261 0.9561 0.9901 0.985 -1.0 0.2761 0.9602 0.5057 0.9719 0.9722 -1.0 0.3125 0.9753 0.9658 0.9791 0.9464 0.9653
0.1481 90.0 19620 0.1187 0.9579 0.9901 0.9901 -1.0 0.5624 0.9604 0.5069 0.9752 0.9754 -1.0 0.5875 0.9769 0.9669 0.9809 0.9489 0.9699
0.1481 91.0 19838 0.1352 0.9513 0.9901 0.9836 0.0 0.3876 0.9532 0.5016 0.97 0.9704 0.0 0.515 0.9733 0.9618 0.9774 0.9408 0.9634
0.1443 92.0 20056 0.1253 0.9586 0.9901 0.9846 -1.0 0.2831 0.9643 0.5055 0.9749 0.9753 -1.0 0.3292 0.9782 0.9679 0.9818 0.9494 0.9688
0.1443 93.0 20274 0.1259 0.9598 0.99 0.9845 -1.0 0.3228 0.9639 0.5055 0.9736 0.9745 -1.0 0.3636 0.9768 0.9707 0.9823 0.9489 0.9667
0.1443 94.0 20492 0.1257 0.9639 0.99 0.985 -1.0 0.3265 0.9672 0.5055 0.9766 0.9769 -1.0 0.3625 0.9793 0.972 0.9831 0.9557 0.9707
0.1447 95.0 20710 0.1168 0.9606 0.9901 0.9842 0.0 0.2617 0.9662 0.5064 0.9759 0.9762 0.0 0.3 0.9801 0.9706 0.9836 0.9506 0.9688
0.1447 96.0 20928 0.1196 0.9625 0.99 0.9847 0.0 0.3062 0.9677 0.5078 0.9769 0.9776 0.0 0.3273 0.9809 0.9711 0.9844 0.9538 0.9707
0.1478 97.0 21146 0.1220 0.9558 0.9901 0.9843 -1.0 0.2922 0.9596 0.5057 0.9729 0.9735 -1.0 0.3071 0.9771 0.9661 0.981 0.9455 0.966
0.1478 98.0 21364 0.1339 0.9503 0.9872 0.9788 0.0 0.2824 0.9558 0.5034 0.9663 0.9672 0.0 0.375 0.9717 0.9655 0.9778 0.9351 0.9565
0.1421 99.0 21582 0.1183 0.9625 0.9901 0.9845 -1.0 0.304 0.9682 0.509 0.9765 0.9771 -1.0 0.3875 0.9807 0.9736 0.9847 0.9514 0.9695
0.1421 100.0 21800 0.1249 0.9571 0.9901 0.9844 -1.0 0.3322 0.9614 0.5052 0.9726 0.9733 -1.0 0.3654 0.9759 0.9657 0.9777 0.9486 0.969

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
83
Safetensors
Model size
43.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for machinelearningzuu/queue_detection

Finetuned
(50)
this model