File size: 2,025 Bytes
c7009d8 269aabb c7009d8 269aabb d70f7c9 269aabb 83273c0 269aabb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-nc-nd-4.0
language:
- en
- de
- ko
library_name: transformers
---
# ππ SOLAR-polyglot-4x10.7
Multilingual experiment based on my mixtral collection [Polyglot](https://huggingface.co/collections/macadeliccc/polyglot-65a2027a90b5e87bcdaa5e12)
![solar](solar-polyglot.png)
The model is proficient in:
+ English
+ German
+ Korean
## π
Code Example
Example with evaluation script also available in [colab](https://colab.research.google.com/drive/10FWCLODU_EFclVOFOlxNYMmSiLilGMBZ?usp=sharing)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/SOLAR-polyglot-4x10.7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
print("Response:")
print(generate_response(prompt), "\n")
```
## Evaluations
TODO
### π Citations
```bibtex
@misc{kim2023solar,
title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling},
author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
year={2023},
eprint={2312.15166},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |