roberta-emotion / modeling_roberta_emotion.py
ma2za's picture
Upload RobertaEmotion
be9811f
raw
history blame
1.14 kB
from torch.nn import CrossEntropyLoss
import torch
from transformers import AutoModel, PreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
from .configuration_roberta_emotion import RobertaEmotionConfig
class RobertaEmotion(PreTrainedModel):
config_class = RobertaEmotionConfig
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.backbone = AutoModel.from_pretrained("roberta-base", config)
self.dropout = torch.nn.Dropout(p=0.1)
self.output = torch.nn.Linear(config.hidden_size, config.num_labels)
def forward(self, input_ids, labels=None, attention_mask=None):
model_output = self.backbone(input_ids)
hidden = model_output.last_hidden_state
logits = self.output(self.dropout(hidden[:, 0, :]))
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return SequenceClassifierOutput(loss=loss, logits=logits)