mRoszak commited on
Commit
b75440b
·
1 Parent(s): 320e3f2

Test commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachJointsDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachJointsDense-v2
16
+ type: PandaReachJointsDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -8.59 +/- 2.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachJointsDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachJointsDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c_panda_reach.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e71f34901ae057ed5c39ce71192767b3119cf090af33337ec6e17a612828a906
3
+ size 107723
a2c_panda_reach/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c_panda_reach/data ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x000002925CA79240>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x000002925CA71E80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVlQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lGgKSweFlIwBQ5R0lFKUjARoaWdolGgSKJYcAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UaApLB4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYHAAAAAAAAAAEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLB4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYHAAAAAAAAAAEBAQEBAQGUaCFLB4WUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 7
36
+ ],
37
+ "low": "[-1. -1. -1. -1. -1. -1. -1.]",
38
+ "high": "[1. 1. 1. 1. 1. 1. 1.]",
39
+ "bounded_below": "[ True True True True True True True]",
40
+ "bounded_above": "[ True True True True True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 1,
44
+ "num_timesteps": 500000,
45
+ "_total_timesteps": 500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676200993290057100,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": "runs/69oqeaud",
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMamM6XHVzZXJzXG1hdGhpXGFwcGRhdGFcbG9jYWxccHJvZ3JhbXNccHl0aG9uXHB5dGhvbjMxMFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAd9cLvsxn372EmmA+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
60
+ "desired_goal": "[[-0.13656412 -0.1090847 0.21933943]]",
61
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": null,
68
+ "_episode_num": 0,
69
+ "use_sde": false,
70
+ "sde_sample_freq": -1,
71
+ "_current_progress_remaining": 0.0,
72
+ "ep_info_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU7ExryNeHsCUhpRSlIwBbJRLMowBdJRHQJIjq14Pf9B1fZQoaAZoCWgPQwgNHNDSFdQiwJSGlFKUaBVLMmgWR0CSJCkkKNQ1dX2UKGgGaAloD0MIIxEawcalI8CUhpRSlGgVSzJoFkdAkiSgZXMhYHV9lChoBmgJaA9DCEyIuaRq6xvAlIaUUpRoFUsyaBZHQJIlJp9JBgN1fZQoaAZoCWgPQwjJVpdTAhIawJSGlFKUaBVLMmgWR0CSJaXe3x4IdX2UKGgGaAloD0MIjgQabOosGcCUhpRSlGgVSzJoFkdAkiZKW1MM7XV9lChoBmgJaA9DCAfQ7/s3lyTAlIaUUpRoFUsyaBZHQJImzCoCMgl1fZQoaAZoCWgPQwhATpgwmnUjwJSGlFKUaBVLMmgWR0CSJ0NhE0BPdX2UKGgGaAloD0MI3Lkw0ovyIcCUhpRSlGgVSzJoFkdAkifEKzAvc3V9lChoBmgJaA9DCG3n+6nx+iTAlIaUUpRoFUsyaBZHQJIoPUiILw51fZQoaAZoCWgPQwjk1w+xwYITwJSGlFKUaBVLMmgWR0CSKM+j/MnrdX2UKGgGaAloD0MIfo0kQbhSIMCUhpRSlGgVSzJoFkdAkilo8+zMR3V9lChoBmgJaA9DCOIFEalp1x7AlIaUUpRoFUsyaBZHQJIp8Lsrupl1fZQoaAZoCWgPQwgtCVBTy2YiwJSGlFKUaBVLMmgWR0CSKmVGCqZMdX2UKGgGaAloD0MIzeZxGMwnIMCUhpRSlGgVSzJoFkdAkirhaxHG0nV9lChoBmgJaA9DCM3lBkMdziXAlIaUUpRoFUsyaBZHQJIrVXgccVB1fZQoaAZoCWgPQwgXRnpRu0cgwJSGlFKUaBVLMmgWR0CSK8ORkmQbdX2UKGgGaAloD0MICttPxvioJMCUhpRSlGgVSzJoFkdAkiwxHG0eEXV9lChoBmgJaA9DCEPiHksfuiLAlIaUUpRoFUsyaBZHQJIsrNUwSJ11fZQoaAZoCWgPQwixprIo7DojwJSGlFKUaBVLMmgWR0CSLSySV4X5dX2UKGgGaAloD0MIU1ipoKKKF8CUhpRSlGgVSzJoFkdAki2z15B1LnV9lChoBmgJaA9DCJJ3DmWo2iXAlIaUUpRoFUsyaBZHQJIuJbRnezl1fZQoaAZoCWgPQwjGaYgq/IkewJSGlFKUaBVLMmgWR0CSLpZ6lchUdX2UKGgGaAloD0MIa5+OxwwUHMCUhpRSlGgVSzJoFkdAki8au4gA63V9lChoBmgJaA9DCLBVgsXh7CLAlIaUUpRoFUsyaBZHQJIvlxjriVB1fZQoaAZoCWgPQwgdVrjlIxkmwJSGlFKUaBVLMmgWR0CSMBbvw3HadX2UKGgGaAloD0MIqmIq/YSbIcCUhpRSlGgVSzJoFkdAkjCRczImxHV9lChoBmgJaA9DCEJD/wQXOxrAlIaUUpRoFUsyaBZHQJIxCtEG7jF1fZQoaAZoCWgPQwhmvRjKiWYWwJSGlFKUaBVLMmgWR0CSMYl/pdKNdX2UKGgGaAloD0MIOQ68Wu6cJ8CUhpRSlGgVSzJoFkdAkjIFt0mtyXV9lChoBmgJaA9DCD0P7s7alSTAlIaUUpRoFUsyaBZHQJIysA1ejVR1fZQoaAZoCWgPQwj2KcdkcYciwJSGlFKUaBVLMmgWR0CSMyaufVZtdX2UKGgGaAloD0MIXBsqxvnbHMCUhpRSlGgVSzJoFkdAkjObvPTodXV9lChoBmgJaA9DCLGIYYcxyRrAlIaUUpRoFUsyaBZHQJI0FdAxBVx1fZQoaAZoCWgPQwgdy7vqAXMVwJSGlFKUaBVLMmgWR0CSNKpQUHpsdX2UKGgGaAloD0MIHEXWGkpNIcCUhpRSlGgVSzJoFkdAkjUv+S8rZ3V9lChoBmgJaA9DCLX7VYDv5hzAlIaUUpRoFUsyaBZHQJI1pSP2f051fZQoaAZoCWgPQwggRgiPNu4dwJSGlFKUaBVLMmgWR0CSNhiVjZtfdX2UKGgGaAloD0MIOV6B6EkJGMCUhpRSlGgVSzJoFkdAkjay8an753V9lChoBmgJaA9DCEUPfAxWDCTAlIaUUpRoFUsyaBZHQJI3Ho7muDB1fZQoaAZoCWgPQwh5k9+ik/UewJSGlFKUaBVLMmgWR0CSN6n2qT8pdX2UKGgGaAloD0MIuwz/6QaKG8CUhpRSlGgVSzJoFkdAkjgwNXo1UHV9lChoBmgJaA9DCNSdJ56zNRvAlIaUUpRoFUsyaBZHQJI4teMQ2/B1fZQoaAZoCWgPQwgVrdwLzOogwJSGlFKUaBVLMmgWR0CSOTHLA57xdX2UKGgGaAloD0MIVpv/Vx3JGsCUhpRSlGgVSzJoFkdAkjmznaFmF3V9lChoBmgJaA9DCATnjCjtRSPAlIaUUpRoFUsyaBZHQJI6IfRu0kZ1fZQoaAZoCWgPQwiU3czoR/siwJSGlFKUaBVLMmgWR0CSOpWAPNFCdX2UKGgGaAloD0MIsK4K1GIQI8CUhpRSlGgVSzJoFkdAkjsFRtP56HV9lChoBmgJaA9DCLIRiNf1wyDAlIaUUpRoFUsyaBZHQJI7obS7Xg91fZQoaAZoCWgPQwgpdjQO9RMjwJSGlFKUaBVLMmgWR0CSPBvdM0xedX2UKGgGaAloD0MI6NoX0AvXI8CUhpRSlGgVSzJoFkdAkjypvo/zKHV9lChoBmgJaA9DCCDURQplMRzAlIaUUpRoFUsyaBZHQJI9Joakyk91fZQoaAZoCWgPQwj/eoUF98MhwJSGlFKUaBVLMmgWR0CSPZ4xUNrkdX2UKGgGaAloD0MIOgX52cjNJMCUhpRSlGgVSzJoFkdAkj4Xl4keIXV9lChoBmgJaA9DCCCYo8fvfRPAlIaUUpRoFUsyaBZHQJI+jb1yvLZ1fZQoaAZoCWgPQwhfm42VmB8gwJSGlFKUaBVLMmgWR0CSPyE2YOUddX2UKGgGaAloD0MIvajdrwJMF8CUhpRSlGgVSzJoFkdAkj+5ftx+8XV9lChoBmgJaA9DCGueI/JdiiDAlIaUUpRoFUsyaBZHQJJARSk0rLB1fZQoaAZoCWgPQwhFnE6y1dUUwJSGlFKUaBVLMmgWR0CSQNuqWC2+dX2UKGgGaAloD0MIeESF6uayIcCUhpRSlGgVSzJoFkdAkkFVLnLaEnV9lChoBmgJaA9DCKIo0CfyXCTAlIaUUpRoFUsyaBZHQJJB0+yJKrd1fZQoaAZoCWgPQwhUGjGzzxMiwJSGlFKUaBVLMmgWR0CSQkzF+/g0dX2UKGgGaAloD0MIbtqM0xD1IcCUhpRSlGgVSzJoFkdAkkK4eYD1XnV9lChoBmgJaA9DCHeC/de5qRrAlIaUUpRoFUsyaBZHQJJDRM10knl1fZQoaAZoCWgPQwiGOqxwy78iwJSGlFKUaBVLMmgWR0CSQ8OO801qdX2UKGgGaAloD0MIZ7eWyXBcJcCUhpRSlGgVSzJoFkdAkkQs274BWHV9lChoBmgJaA9DCD2Zf/RNSiXAlIaUUpRoFUsyaBZHQJJEqZBsyi51fZQoaAZoCWgPQwie0yzQ7pAbwJSGlFKUaBVLMmgWR0CSRSX0XgtOdX2UKGgGaAloD0MIsK2f/rPGJcCUhpRSlGgVSzJoFkdAkkWcJhOQAHV9lChoBmgJaA9DCC3RWWYR+iHAlIaUUpRoFUsyaBZHQJJGIGC7K7t1fZQoaAZoCWgPQwitUKT7Oe0jwJSGlFKUaBVLMmgWR0CSRrzLfUF0dX2UKGgGaAloD0MIEVX4M7w5DsCUhpRSlGgVSzJoFkdAkkcwbADaG3V9lChoBmgJaA9DCH79EBsspCDAlIaUUpRoFUsyaBZHQJJHwcS5AhV1fZQoaAZoCWgPQwh8fhghPGokwJSGlFKUaBVLMmgWR0CSSDwbVBlddX2UKGgGaAloD0MIcQLTad2WHcCUhpRSlGgVSzJoFkdAkkjZVCHARHV9lChoBmgJaA9DCF2Kq8q+mxXAlIaUUpRoFUsyaBZHQJJJTr8iwB51fZQoaAZoCWgPQwgYXHNH/7skwJSGlFKUaBVLMmgWR0CSSdFi8WbgdX2UKGgGaAloD0MIz6EMVTGFHMCUhpRSlGgVSzJoFkdAkkpnUQTVUnV9lChoBmgJaA9DCOqymNh8RCHAlIaUUpRoFUsyaBZHQJJK5ShrWRR1fZQoaAZoCWgPQwjrqdVXV2UTwJSGlFKUaBVLMmgWR0CSS17rcCYDdX2UKGgGaAloD0MIGHrE6Lm1I8CUhpRSlGgVSzJoFkdAkkvsophF3XV9lChoBmgJaA9DCL4R3bOusRzAlIaUUpRoFUsyaBZHQJJMVouf29N1fZQoaAZoCWgPQwiPiv87ovIhwJSGlFKUaBVLMmgWR0CSTOAIY3vQdX2UKGgGaAloD0MIV0EMdO27F8CUhpRSlGgVSzJoFkdAkk1QV9F4LXV9lChoBmgJaA9DCCPYuP5d/yHAlIaUUpRoFUsyaBZHQJJN/MjeKsN1fZQoaAZoCWgPQwgt6L0xBNAbwJSGlFKUaBVLMmgWR0CSTnOEM9bHdX2UKGgGaAloD0MIJQfsavJ0GsCUhpRSlGgVSzJoFkdAkk7x8c+7lXV9lChoBmgJaA9DCPbRqSufzSTAlIaUUpRoFUsyaBZHQJJPcqAjIJZ1fZQoaAZoCWgPQwhgksoUc9AXwJSGlFKUaBVLMmgWR0CST/HdGiHqdX2UKGgGaAloD0MILq7xmeynI8CUhpRSlGgVSzJoFkdAklB3NTtLMHV9lChoBmgJaA9DCDPcgM8P6yTAlIaUUpRoFUsyaBZHQJJRAFkhA4Z1fZQoaAZoCWgPQwi7e4Duy8EhwJSGlFKUaBVLMmgWR0CSUXE7GNrCdX2UKGgGaAloD0MIZCDPLt+aHcCUhpRSlGgVSzJoFkdAklHgZflZHXV9lChoBmgJaA9DCMFY38Dkth/AlIaUUpRoFUsyaBZHQJJSWK508vF1fZQoaAZoCWgPQwj2RUJbzoUVwJSGlFKUaBVLMmgWR0CSUsViF0xNdX2UKGgGaAloD0MIiZtTyQDgHsCUhpRSlGgVSzJoFkdAklNNrsSkCXV9lChoBmgJaA9DCHDOiNLeQBfAlIaUUpRoFUsyaBZHQJJTwqbz9TB1fZQoaAZoCWgPQwiM8szLYV8kwJSGlFKUaBVLMmgWR0CSVDO2iL2pdX2UKGgGaAloD0MIZOdtbHa8J8CUhpRSlGgVSzJoFkdAklSl+y7f53V9lChoBmgJaA9DCGd79Ib7ACDAlIaUUpRoFUsyaBZHQJJVHMHKOkt1ZS4="
75
+ },
76
+ "ep_success_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
79
+ },
80
+ "_n_updates": 100000,
81
+ "n_steps": 5,
82
+ "gamma": 0.99,
83
+ "gae_lambda": 1.0,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "normalize_advantage": false
88
+ }
a2c_panda_reach/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6a58dfc5789832d44820e521aee92d11011c223944f9add988e8b1736eb4f54
3
+ size 45630
a2c_panda_reach/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c13f4290dc09d043b388fb1fe7818477b3a2f58eeab2175cba584f40030dc525
3
+ size 46910
a2c_panda_reach/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c_panda_reach/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.22621-SP0 10.0.22621
2
+ - Python: 3.10.2
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x000002925CA79240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002925CA71E80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVlQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lGgKSweFlIwBQ5R0lFKUjARoaWdolGgSKJYcAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UaApLB4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYHAAAAAAAAAAEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLB4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYHAAAAAAAAAAEBAQEBAQGUaCFLB4WUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [7], "low": "[-1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True]", "bounded_above": "[ True True True True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676200993290057100, "learning_rate": 0.0007, "tensorboard_log": "runs/69oqeaud", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMamM6XHVzZXJzXG1hdGhpXGFwcGRhdGFcbG9jYWxccHJvZ3JhbXNccHl0aG9uXHB5dGhvbjMxMFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAd9cLvsxn372EmmA+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13656412 -0.1090847 0.21933943]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU7ExryNeHsCUhpRSlIwBbJRLMowBdJRHQJIjq14Pf9B1fZQoaAZoCWgPQwgNHNDSFdQiwJSGlFKUaBVLMmgWR0CSJCkkKNQ1dX2UKGgGaAloD0MIIxEawcalI8CUhpRSlGgVSzJoFkdAkiSgZXMhYHV9lChoBmgJaA9DCEyIuaRq6xvAlIaUUpRoFUsyaBZHQJIlJp9JBgN1fZQoaAZoCWgPQwjJVpdTAhIawJSGlFKUaBVLMmgWR0CSJaXe3x4IdX2UKGgGaAloD0MIjgQabOosGcCUhpRSlGgVSzJoFkdAkiZKW1MM7XV9lChoBmgJaA9DCAfQ7/s3lyTAlIaUUpRoFUsyaBZHQJImzCoCMgl1fZQoaAZoCWgPQwhATpgwmnUjwJSGlFKUaBVLMmgWR0CSJ0NhE0BPdX2UKGgGaAloD0MI3Lkw0ovyIcCUhpRSlGgVSzJoFkdAkifEKzAvc3V9lChoBmgJaA9DCG3n+6nx+iTAlIaUUpRoFUsyaBZHQJIoPUiILw51fZQoaAZoCWgPQwjk1w+xwYITwJSGlFKUaBVLMmgWR0CSKM+j/MnrdX2UKGgGaAloD0MIfo0kQbhSIMCUhpRSlGgVSzJoFkdAkilo8+zMR3V9lChoBmgJaA9DCOIFEalp1x7AlIaUUpRoFUsyaBZHQJIp8Lsrupl1fZQoaAZoCWgPQwgtCVBTy2YiwJSGlFKUaBVLMmgWR0CSKmVGCqZMdX2UKGgGaAloD0MIzeZxGMwnIMCUhpRSlGgVSzJoFkdAkirhaxHG0nV9lChoBmgJaA9DCM3lBkMdziXAlIaUUpRoFUsyaBZHQJIrVXgccVB1fZQoaAZoCWgPQwgXRnpRu0cgwJSGlFKUaBVLMmgWR0CSK8ORkmQbdX2UKGgGaAloD0MICttPxvioJMCUhpRSlGgVSzJoFkdAkiwxHG0eEXV9lChoBmgJaA9DCEPiHksfuiLAlIaUUpRoFUsyaBZHQJIsrNUwSJ11fZQoaAZoCWgPQwixprIo7DojwJSGlFKUaBVLMmgWR0CSLSySV4X5dX2UKGgGaAloD0MIU1ipoKKKF8CUhpRSlGgVSzJoFkdAki2z15B1LnV9lChoBmgJaA9DCJJ3DmWo2iXAlIaUUpRoFUsyaBZHQJIuJbRnezl1fZQoaAZoCWgPQwjGaYgq/IkewJSGlFKUaBVLMmgWR0CSLpZ6lchUdX2UKGgGaAloD0MIa5+OxwwUHMCUhpRSlGgVSzJoFkdAki8au4gA63V9lChoBmgJaA9DCLBVgsXh7CLAlIaUUpRoFUsyaBZHQJIvlxjriVB1fZQoaAZoCWgPQwgdVrjlIxkmwJSGlFKUaBVLMmgWR0CSMBbvw3HadX2UKGgGaAloD0MIqmIq/YSbIcCUhpRSlGgVSzJoFkdAkjCRczImxHV9lChoBmgJaA9DCEJD/wQXOxrAlIaUUpRoFUsyaBZHQJIxCtEG7jF1fZQoaAZoCWgPQwhmvRjKiWYWwJSGlFKUaBVLMmgWR0CSMYl/pdKNdX2UKGgGaAloD0MIOQ68Wu6cJ8CUhpRSlGgVSzJoFkdAkjIFt0mtyXV9lChoBmgJaA9DCD0P7s7alSTAlIaUUpRoFUsyaBZHQJIysA1ejVR1fZQoaAZoCWgPQwj2KcdkcYciwJSGlFKUaBVLMmgWR0CSMyaufVZtdX2UKGgGaAloD0MIXBsqxvnbHMCUhpRSlGgVSzJoFkdAkjObvPTodXV9lChoBmgJaA9DCLGIYYcxyRrAlIaUUpRoFUsyaBZHQJI0FdAxBVx1fZQoaAZoCWgPQwgdy7vqAXMVwJSGlFKUaBVLMmgWR0CSNKpQUHpsdX2UKGgGaAloD0MIHEXWGkpNIcCUhpRSlGgVSzJoFkdAkjUv+S8rZ3V9lChoBmgJaA9DCLX7VYDv5hzAlIaUUpRoFUsyaBZHQJI1pSP2f051fZQoaAZoCWgPQwggRgiPNu4dwJSGlFKUaBVLMmgWR0CSNhiVjZtfdX2UKGgGaAloD0MIOV6B6EkJGMCUhpRSlGgVSzJoFkdAkjay8an753V9lChoBmgJaA9DCEUPfAxWDCTAlIaUUpRoFUsyaBZHQJI3Ho7muDB1fZQoaAZoCWgPQwh5k9+ik/UewJSGlFKUaBVLMmgWR0CSN6n2qT8pdX2UKGgGaAloD0MIuwz/6QaKG8CUhpRSlGgVSzJoFkdAkjgwNXo1UHV9lChoBmgJaA9DCNSdJ56zNRvAlIaUUpRoFUsyaBZHQJI4teMQ2/B1fZQoaAZoCWgPQwgVrdwLzOogwJSGlFKUaBVLMmgWR0CSOTHLA57xdX2UKGgGaAloD0MIVpv/Vx3JGsCUhpRSlGgVSzJoFkdAkjmznaFmF3V9lChoBmgJaA9DCATnjCjtRSPAlIaUUpRoFUsyaBZHQJI6IfRu0kZ1fZQoaAZoCWgPQwiU3czoR/siwJSGlFKUaBVLMmgWR0CSOpWAPNFCdX2UKGgGaAloD0MIsK4K1GIQI8CUhpRSlGgVSzJoFkdAkjsFRtP56HV9lChoBmgJaA9DCLIRiNf1wyDAlIaUUpRoFUsyaBZHQJI7obS7Xg91fZQoaAZoCWgPQwgpdjQO9RMjwJSGlFKUaBVLMmgWR0CSPBvdM0xedX2UKGgGaAloD0MI6NoX0AvXI8CUhpRSlGgVSzJoFkdAkjypvo/zKHV9lChoBmgJaA9DCCDURQplMRzAlIaUUpRoFUsyaBZHQJI9Joakyk91fZQoaAZoCWgPQwj/eoUF98MhwJSGlFKUaBVLMmgWR0CSPZ4xUNrkdX2UKGgGaAloD0MIOgX52cjNJMCUhpRSlGgVSzJoFkdAkj4Xl4keIXV9lChoBmgJaA9DCCCYo8fvfRPAlIaUUpRoFUsyaBZHQJI+jb1yvLZ1fZQoaAZoCWgPQwhfm42VmB8gwJSGlFKUaBVLMmgWR0CSPyE2YOUddX2UKGgGaAloD0MIvajdrwJMF8CUhpRSlGgVSzJoFkdAkj+5ftx+8XV9lChoBmgJaA9DCGueI/JdiiDAlIaUUpRoFUsyaBZHQJJARSk0rLB1fZQoaAZoCWgPQwhFnE6y1dUUwJSGlFKUaBVLMmgWR0CSQNuqWC2+dX2UKGgGaAloD0MIeESF6uayIcCUhpRSlGgVSzJoFkdAkkFVLnLaEnV9lChoBmgJaA9DCKIo0CfyXCTAlIaUUpRoFUsyaBZHQJJB0+yJKrd1fZQoaAZoCWgPQwhUGjGzzxMiwJSGlFKUaBVLMmgWR0CSQkzF+/g0dX2UKGgGaAloD0MIbtqM0xD1IcCUhpRSlGgVSzJoFkdAkkK4eYD1XnV9lChoBmgJaA9DCHeC/de5qRrAlIaUUpRoFUsyaBZHQJJDRM10knl1fZQoaAZoCWgPQwiGOqxwy78iwJSGlFKUaBVLMmgWR0CSQ8OO801qdX2UKGgGaAloD0MIZ7eWyXBcJcCUhpRSlGgVSzJoFkdAkkQs274BWHV9lChoBmgJaA9DCD2Zf/RNSiXAlIaUUpRoFUsyaBZHQJJEqZBsyi51fZQoaAZoCWgPQwie0yzQ7pAbwJSGlFKUaBVLMmgWR0CSRSX0XgtOdX2UKGgGaAloD0MIsK2f/rPGJcCUhpRSlGgVSzJoFkdAkkWcJhOQAHV9lChoBmgJaA9DCC3RWWYR+iHAlIaUUpRoFUsyaBZHQJJGIGC7K7t1fZQoaAZoCWgPQwitUKT7Oe0jwJSGlFKUaBVLMmgWR0CSRrzLfUF0dX2UKGgGaAloD0MIEVX4M7w5DsCUhpRSlGgVSzJoFkdAkkcwbADaG3V9lChoBmgJaA9DCH79EBsspCDAlIaUUpRoFUsyaBZHQJJHwcS5AhV1fZQoaAZoCWgPQwh8fhghPGokwJSGlFKUaBVLMmgWR0CSSDwbVBlddX2UKGgGaAloD0MIcQLTad2WHcCUhpRSlGgVSzJoFkdAkkjZVCHARHV9lChoBmgJaA9DCF2Kq8q+mxXAlIaUUpRoFUsyaBZHQJJJTr8iwB51fZQoaAZoCWgPQwgYXHNH/7skwJSGlFKUaBVLMmgWR0CSSdFi8WbgdX2UKGgGaAloD0MIz6EMVTGFHMCUhpRSlGgVSzJoFkdAkkpnUQTVUnV9lChoBmgJaA9DCOqymNh8RCHAlIaUUpRoFUsyaBZHQJJK5ShrWRR1fZQoaAZoCWgPQwjrqdVXV2UTwJSGlFKUaBVLMmgWR0CSS17rcCYDdX2UKGgGaAloD0MIGHrE6Lm1I8CUhpRSlGgVSzJoFkdAkkvsophF3XV9lChoBmgJaA9DCL4R3bOusRzAlIaUUpRoFUsyaBZHQJJMVouf29N1fZQoaAZoCWgPQwiPiv87ovIhwJSGlFKUaBVLMmgWR0CSTOAIY3vQdX2UKGgGaAloD0MIV0EMdO27F8CUhpRSlGgVSzJoFkdAkk1QV9F4LXV9lChoBmgJaA9DCCPYuP5d/yHAlIaUUpRoFUsyaBZHQJJN/MjeKsN1fZQoaAZoCWgPQwgt6L0xBNAbwJSGlFKUaBVLMmgWR0CSTnOEM9bHdX2UKGgGaAloD0MIJQfsavJ0GsCUhpRSlGgVSzJoFkdAkk7x8c+7lXV9lChoBmgJaA9DCPbRqSufzSTAlIaUUpRoFUsyaBZHQJJPcqAjIJZ1fZQoaAZoCWgPQwhgksoUc9AXwJSGlFKUaBVLMmgWR0CST/HdGiHqdX2UKGgGaAloD0MILq7xmeynI8CUhpRSlGgVSzJoFkdAklB3NTtLMHV9lChoBmgJaA9DCDPcgM8P6yTAlIaUUpRoFUsyaBZHQJJRAFkhA4Z1fZQoaAZoCWgPQwi7e4Duy8EhwJSGlFKUaBVLMmgWR0CSUXE7GNrCdX2UKGgGaAloD0MIZCDPLt+aHcCUhpRSlGgVSzJoFkdAklHgZflZHXV9lChoBmgJaA9DCMFY38Dkth/AlIaUUpRoFUsyaBZHQJJSWK508vF1fZQoaAZoCWgPQwj2RUJbzoUVwJSGlFKUaBVLMmgWR0CSUsViF0xNdX2UKGgGaAloD0MIiZtTyQDgHsCUhpRSlGgVSzJoFkdAklNNrsSkCXV9lChoBmgJaA9DCHDOiNLeQBfAlIaUUpRoFUsyaBZHQJJTwqbz9TB1fZQoaAZoCWgPQwiM8szLYV8kwJSGlFKUaBVLMmgWR0CSVDO2iL2pdX2UKGgGaAloD0MIZOdtbHa8J8CUhpRSlGgVSzJoFkdAklSl+y7f53V9lChoBmgJaA9DCGd79Ib7ACDAlIaUUpRoFUsyaBZHQJJVHMHKOkt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.2", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -8.594432516675443, "std_reward": 2.2898264340475625, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T12:43:06.283606"}