Add st hub-features
Browse files- 1_Pooling/config.json +7 -0
- README.md +75 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- sentence_bert_config.json +1 -1
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: feature-extraction
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# Sentence Embeddings with `albert-zwnj-wnli-mean-tokens`
|
11 |
+
|
12 |
+
## Usage (Sentence-Transformers)
|
13 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
14 |
+
|
15 |
+
```
|
16 |
+
pip install -U sentence-transformers
|
17 |
+
pip install -U sentencepiece
|
18 |
+
```
|
19 |
+
|
20 |
+
Then you can use the model like this:
|
21 |
+
|
22 |
+
```python
|
23 |
+
from sentence_transformers import SentenceTransformer
|
24 |
+
|
25 |
+
|
26 |
+
sentences = [
|
27 |
+
'اولین حکمران شهر بابل کی بود؟',
|
28 |
+
'در فصل زمستان چه اتفاقی افتاد؟',
|
29 |
+
'میراث کوروش'
|
30 |
+
]
|
31 |
+
model = SentenceTransformer('m3hrdadfi/albert-zwnj-wnli-mean-tokens')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
## Usage (HuggingFace Transformers)
|
37 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoTokenizer, AutoModel
|
41 |
+
import torch
|
42 |
+
|
43 |
+
|
44 |
+
# Max Pooling - Take the max value over time for every dimension.
|
45 |
+
def max_pooling(model_output, attention_mask):
|
46 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
47 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
48 |
+
token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
|
49 |
+
return torch.mean(token_embeddings, 1)[0]
|
50 |
+
|
51 |
+
# Sentences we want sentence embeddings for
|
52 |
+
sentences = [
|
53 |
+
'اولین حکمران شهر بابل کی بود؟',
|
54 |
+
'در فصل زمستان چه اتفاقی افتاد؟',
|
55 |
+
'میراث کوروش'
|
56 |
+
]
|
57 |
+
|
58 |
+
# Load model from HuggingFace Hub
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/albert-zwnj-wnli-mean-tokens')
|
60 |
+
model = AutoModel.from_pretrained('m3hrdadfi/albert-zwnj-wnli-mean-tokens')
|
61 |
+
|
62 |
+
# Tokenize sentences
|
63 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
64 |
+
# Compute token embeddings
|
65 |
+
with torch.no_grad():
|
66 |
+
model_output = model(**encoded_input)
|
67 |
+
# Perform pooling. In this case, max pooling.
|
68 |
+
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
## Questions?
|
75 |
+
Post a Github issue from [HERE](https://github.com/m3hrdadfi/sentence-transformers).
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 128,
|
3 |
"do_lower_case": false
|
4 |
}
|