nicolaus625
commited on
Upload model
Browse files- README.md +1 -1
- modelling_musilingo.py +778 -14
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
language:
|
4 |
- en
|
|
|
5 |
library_name: transformers
|
6 |
tags:
|
7 |
- music
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- en
|
4 |
+
license: cc-by-nc-4.0
|
5 |
library_name: transformers
|
6 |
tags:
|
7 |
- music
|
modelling_musilingo.py
CHANGED
@@ -3,6 +3,11 @@ import os
|
|
3 |
import random
|
4 |
import math
|
5 |
import re
|
|
|
|
|
|
|
|
|
|
|
6 |
from typing import List, Optional, Tuple, Union
|
7 |
|
8 |
from torch.cuda.amp import autocast as autocast
|
@@ -14,7 +19,7 @@ from torch.nn import CrossEntropyLoss
|
|
14 |
from transformers import Wav2Vec2FeatureExtractor
|
15 |
from omegaconf import OmegaConf
|
16 |
|
17 |
-
from
|
18 |
import timm.models.hub as timm_hub
|
19 |
|
20 |
|
@@ -28,6 +33,765 @@ from transformers import PreTrainedModel
|
|
28 |
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
class Registry:
|
32 |
mapping = {
|
33 |
"builder_name_mapping": {},
|
@@ -49,12 +813,12 @@ class Registry:
|
|
49 |
|
50 |
Usage:
|
51 |
|
52 |
-
from lavi.common.registry import registry
|
53 |
-
from lavi.datasets.base_dataset_builder import BaseDatasetBuilder
|
54 |
"""
|
55 |
|
56 |
def wrap(builder_cls):
|
57 |
-
from musilingo.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
58 |
|
59 |
assert issubclass(
|
60 |
builder_cls, BaseDatasetBuilder
|
@@ -81,11 +845,11 @@ class Registry:
|
|
81 |
|
82 |
Usage:
|
83 |
|
84 |
-
from lavi.common.registry import registry
|
85 |
"""
|
86 |
|
87 |
def wrap(task_cls):
|
88 |
-
from musilingo.tasks.base_task import BaseTask
|
89 |
|
90 |
assert issubclass(
|
91 |
task_cls, BaseTask
|
@@ -110,7 +874,7 @@ class Registry:
|
|
110 |
|
111 |
Usage:
|
112 |
|
113 |
-
from lavi.common.registry import registry
|
114 |
"""
|
115 |
|
116 |
def wrap(model_cls):
|
@@ -138,11 +902,11 @@ class Registry:
|
|
138 |
|
139 |
Usage:
|
140 |
|
141 |
-
from lavi.common.registry import registry
|
142 |
"""
|
143 |
|
144 |
def wrap(processor_cls):
|
145 |
-
from musilingo.processors import BaseProcessor
|
146 |
|
147 |
assert issubclass(
|
148 |
processor_cls, BaseProcessor
|
@@ -167,7 +931,7 @@ class Registry:
|
|
167 |
|
168 |
Usage:
|
169 |
|
170 |
-
from minigpt4.common.registry import registry
|
171 |
"""
|
172 |
|
173 |
def wrap(lr_sched_cls):
|
@@ -191,7 +955,7 @@ class Registry:
|
|
191 |
|
192 |
Usage:
|
193 |
|
194 |
-
from minigpt4.common.registry import registry
|
195 |
"""
|
196 |
|
197 |
def wrap(runner_cls):
|
@@ -215,7 +979,7 @@ class Registry:
|
|
215 |
|
216 |
Usage:
|
217 |
|
218 |
-
from minigpt4.common.registry import registry
|
219 |
"""
|
220 |
assert isinstance(path, str), "All path must be str."
|
221 |
if name in cls.mapping["paths"]:
|
@@ -231,7 +995,7 @@ class Registry:
|
|
231 |
|
232 |
Usage::
|
233 |
|
234 |
-
from minigpt4.common.registry import registry
|
235 |
|
236 |
registry.register("config", {})
|
237 |
"""
|
@@ -340,7 +1104,7 @@ class Registry:
|
|
340 |
name: Key which needs to be removed.
|
341 |
Usage::
|
342 |
|
343 |
-
from mmf.common.registry import registry
|
344 |
|
345 |
config = registry.unregister("config")
|
346 |
"""
|
|
|
3 |
import random
|
4 |
import math
|
5 |
import re
|
6 |
+
import shutil
|
7 |
+
import warnings
|
8 |
+
import datetime
|
9 |
+
import time
|
10 |
+
from collections import defaultdict, deque
|
11 |
from typing import List, Optional, Tuple, Union
|
12 |
|
13 |
from torch.cuda.amp import autocast as autocast
|
|
|
19 |
from transformers import Wav2Vec2FeatureExtractor
|
20 |
from omegaconf import OmegaConf
|
21 |
|
22 |
+
from .configuration_musilingo import MusiLingoConfig, PATH
|
23 |
import timm.models.hub as timm_hub
|
24 |
|
25 |
|
|
|
33 |
|
34 |
|
35 |
|
36 |
+
def download_url(
|
37 |
+
url: str, root: str, filename: Optional[str] = None, md5: Optional[str] = None, max_redirect_hops: int = 3
|
38 |
+
) -> None:
|
39 |
+
"""Download a file from a url and place it in root.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
url (str): URL to download file from
|
43 |
+
root (str): Directory to place downloaded file in
|
44 |
+
filename (str, optional): Name to save the file under. If None, use the basename of the URL
|
45 |
+
md5 (str, optional): MD5 checksum of the download. If None, do not check
|
46 |
+
max_redirect_hops (int, optional): Maximum number of redirect hops allowed
|
47 |
+
"""
|
48 |
+
root = os.path.expanduser(root)
|
49 |
+
if not filename:
|
50 |
+
filename = os.path.basename(url)
|
51 |
+
fpath = os.path.join(root, filename)
|
52 |
+
|
53 |
+
os.makedirs(root, exist_ok=True)
|
54 |
+
|
55 |
+
# check if file is already present locally
|
56 |
+
if check_integrity(fpath, md5):
|
57 |
+
print("Using downloaded and verified file: " + fpath)
|
58 |
+
return
|
59 |
+
|
60 |
+
if _is_remote_location_available():
|
61 |
+
_download_file_from_remote_location(fpath, url)
|
62 |
+
else:
|
63 |
+
# expand redirect chain if needed
|
64 |
+
url = _get_redirect_url(url, max_hops=max_redirect_hops)
|
65 |
+
|
66 |
+
# check if file is located on Google Drive
|
67 |
+
file_id = _get_google_drive_file_id(url)
|
68 |
+
if file_id is not None:
|
69 |
+
return download_file_from_google_drive(file_id, root, filename, md5)
|
70 |
+
|
71 |
+
# download the file
|
72 |
+
try:
|
73 |
+
print("Downloading " + url + " to " + fpath)
|
74 |
+
_urlretrieve(url, fpath)
|
75 |
+
except (urllib.error.URLError, OSError) as e: # type: ignore[attr-defined]
|
76 |
+
if url[:5] == "https":
|
77 |
+
url = url.replace("https:", "http:")
|
78 |
+
print("Failed download. Trying https -> http instead. Downloading " + url + " to " + fpath)
|
79 |
+
_urlretrieve(url, fpath)
|
80 |
+
else:
|
81 |
+
raise e
|
82 |
+
|
83 |
+
# check integrity of downloaded file
|
84 |
+
if not check_integrity(fpath, md5):
|
85 |
+
raise RuntimeError("File not found or corrupted.")
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
def load_dataset_config(cfg_path):
|
90 |
+
cfg = OmegaConf.load(cfg_path).datasets
|
91 |
+
cfg = cfg[list(cfg.keys())[0]]
|
92 |
+
|
93 |
+
return cfg
|
94 |
+
|
95 |
+
class SmoothedValue(object):
|
96 |
+
"""Track a series of values and provide access to smoothed values over a
|
97 |
+
window or the global series average.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, window_size=20, fmt=None):
|
101 |
+
if fmt is None:
|
102 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
103 |
+
self.deque = deque(maxlen=window_size)
|
104 |
+
self.total = 0.0
|
105 |
+
self.count = 0
|
106 |
+
self.fmt = fmt
|
107 |
+
|
108 |
+
def update(self, value, n=1):
|
109 |
+
self.deque.append(value)
|
110 |
+
self.count += n
|
111 |
+
self.total += value * n
|
112 |
+
|
113 |
+
def synchronize_between_processes(self):
|
114 |
+
"""
|
115 |
+
Warning: does not synchronize the deque!
|
116 |
+
"""
|
117 |
+
if not is_dist_avail_and_initialized():
|
118 |
+
return
|
119 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
120 |
+
dist.barrier()
|
121 |
+
dist.all_reduce(t)
|
122 |
+
t = t.tolist()
|
123 |
+
self.count = int(t[0])
|
124 |
+
self.total = t[1]
|
125 |
+
|
126 |
+
@property
|
127 |
+
def median(self):
|
128 |
+
d = torch.tensor(list(self.deque))
|
129 |
+
return d.median().item()
|
130 |
+
|
131 |
+
@property
|
132 |
+
def avg(self):
|
133 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
134 |
+
return d.mean().item()
|
135 |
+
|
136 |
+
@property
|
137 |
+
def global_avg(self):
|
138 |
+
return self.total / self.count
|
139 |
+
|
140 |
+
@property
|
141 |
+
def max(self):
|
142 |
+
return max(self.deque)
|
143 |
+
|
144 |
+
@property
|
145 |
+
def value(self):
|
146 |
+
return self.deque[-1]
|
147 |
+
|
148 |
+
def __str__(self):
|
149 |
+
return self.fmt.format(
|
150 |
+
median=self.median,
|
151 |
+
avg=self.avg,
|
152 |
+
global_avg=self.global_avg,
|
153 |
+
max=self.max,
|
154 |
+
value=self.value,
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
class MetricLogger(object):
|
159 |
+
def __init__(self, delimiter="\t"):
|
160 |
+
self.meters = defaultdict(SmoothedValue)
|
161 |
+
self.delimiter = delimiter
|
162 |
+
|
163 |
+
def update(self, **kwargs):
|
164 |
+
for k, v in kwargs.items():
|
165 |
+
if isinstance(v, torch.Tensor):
|
166 |
+
v = v.item()
|
167 |
+
assert isinstance(v, (float, int))
|
168 |
+
self.meters[k].update(v)
|
169 |
+
|
170 |
+
def __getattr__(self, attr):
|
171 |
+
if attr in self.meters:
|
172 |
+
return self.meters[attr]
|
173 |
+
if attr in self.__dict__:
|
174 |
+
return self.__dict__[attr]
|
175 |
+
raise AttributeError(
|
176 |
+
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
|
177 |
+
)
|
178 |
+
|
179 |
+
def __str__(self):
|
180 |
+
loss_str = []
|
181 |
+
for name, meter in self.meters.items():
|
182 |
+
loss_str.append("{}: {}".format(name, str(meter)))
|
183 |
+
return self.delimiter.join(loss_str)
|
184 |
+
|
185 |
+
def global_avg(self):
|
186 |
+
loss_str = []
|
187 |
+
for name, meter in self.meters.items():
|
188 |
+
loss_str.append("{}: {:.4f}".format(name, meter.global_avg))
|
189 |
+
return self.delimiter.join(loss_str)
|
190 |
+
|
191 |
+
def synchronize_between_processes(self):
|
192 |
+
for meter in self.meters.values():
|
193 |
+
meter.synchronize_between_processes()
|
194 |
+
|
195 |
+
def add_meter(self, name, meter):
|
196 |
+
self.meters[name] = meter
|
197 |
+
|
198 |
+
def log_every(self, iterable, print_freq, header=None):
|
199 |
+
i = 0
|
200 |
+
if not header:
|
201 |
+
header = ""
|
202 |
+
start_time = time.time()
|
203 |
+
end = time.time()
|
204 |
+
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
205 |
+
data_time = SmoothedValue(fmt="{avg:.4f}")
|
206 |
+
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
207 |
+
log_msg = [
|
208 |
+
header,
|
209 |
+
"[{0" + space_fmt + "}/{1}]",
|
210 |
+
"eta: {eta}",
|
211 |
+
"{meters}",
|
212 |
+
"time: {time}",
|
213 |
+
"data: {data}",
|
214 |
+
]
|
215 |
+
if torch.cuda.is_available():
|
216 |
+
log_msg.append("max mem: {memory:.0f}")
|
217 |
+
log_msg = self.delimiter.join(log_msg)
|
218 |
+
MB = 1024.0 * 1024.0
|
219 |
+
for obj in iterable:
|
220 |
+
data_time.update(time.time() - end)
|
221 |
+
yield obj
|
222 |
+
iter_time.update(time.time() - end)
|
223 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
224 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
225 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
226 |
+
if torch.cuda.is_available():
|
227 |
+
print(
|
228 |
+
log_msg.format(
|
229 |
+
i,
|
230 |
+
len(iterable),
|
231 |
+
eta=eta_string,
|
232 |
+
meters=str(self),
|
233 |
+
time=str(iter_time),
|
234 |
+
data=str(data_time),
|
235 |
+
memory=torch.cuda.max_memory_allocated() / MB,
|
236 |
+
)
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
print(
|
240 |
+
log_msg.format(
|
241 |
+
i,
|
242 |
+
len(iterable),
|
243 |
+
eta=eta_string,
|
244 |
+
meters=str(self),
|
245 |
+
time=str(iter_time),
|
246 |
+
data=str(data_time),
|
247 |
+
)
|
248 |
+
)
|
249 |
+
i += 1
|
250 |
+
end = time.time()
|
251 |
+
total_time = time.time() - start_time
|
252 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
253 |
+
print(
|
254 |
+
"{} Total time: {} ({:.4f} s / it)".format(
|
255 |
+
header, total_time_str, total_time / len(iterable)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
|
259 |
+
|
260 |
+
def move_to_cuda(sample):
|
261 |
+
def _move_to_cuda(tensor):
|
262 |
+
return tensor.cuda()
|
263 |
+
|
264 |
+
return apply_to_sample(_move_to_cuda, sample)
|
265 |
+
|
266 |
+
def apply_to_sample(f, sample):
|
267 |
+
if len(sample) == 0:
|
268 |
+
return {}
|
269 |
+
|
270 |
+
def _apply(x):
|
271 |
+
if torch.is_tensor(x):
|
272 |
+
return f(x)
|
273 |
+
elif isinstance(x, dict):
|
274 |
+
return {key: _apply(value) for key, value in x.items()}
|
275 |
+
elif isinstance(x, list):
|
276 |
+
return [_apply(x) for x in x]
|
277 |
+
else:
|
278 |
+
return x
|
279 |
+
|
280 |
+
return _apply(sample)
|
281 |
+
|
282 |
+
def prepare_sample(samples, cuda_enabled=True):
|
283 |
+
if cuda_enabled:
|
284 |
+
samples = move_to_cuda(samples)
|
285 |
+
|
286 |
+
# TODO fp16 support
|
287 |
+
|
288 |
+
return samples
|
289 |
+
|
290 |
+
def get_world_size():
|
291 |
+
if not is_dist_avail_and_initialized():
|
292 |
+
return 1
|
293 |
+
return dist.get_world_size()
|
294 |
+
|
295 |
+
class BaseTask:
|
296 |
+
def __init__(self, **kwargs):
|
297 |
+
super().__init__()
|
298 |
+
|
299 |
+
self.inst_id_key = "instance_id"
|
300 |
+
|
301 |
+
@classmethod
|
302 |
+
def setup_task(cls, **kwargs):
|
303 |
+
return cls()
|
304 |
+
|
305 |
+
def build_model(self, cfg):
|
306 |
+
model_config = cfg.model_cfg
|
307 |
+
|
308 |
+
model_cls = registry.get_model_class(model_config.arch)
|
309 |
+
return model_cls.from_config(model_config)
|
310 |
+
|
311 |
+
def build_datasets(self, cfg):
|
312 |
+
"""
|
313 |
+
Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'.
|
314 |
+
Download dataset and annotations automatically if not exist.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
cfg (common.config.Config): _description_
|
318 |
+
|
319 |
+
Returns:
|
320 |
+
dict: Dictionary of torch.utils.data.Dataset objects by split.
|
321 |
+
"""
|
322 |
+
|
323 |
+
datasets = dict()
|
324 |
+
|
325 |
+
datasets_config = cfg.datasets_cfg
|
326 |
+
|
327 |
+
assert len(datasets_config) > 0, "At least one dataset has to be specified."
|
328 |
+
|
329 |
+
for name in datasets_config:
|
330 |
+
dataset_config = datasets_config[name]
|
331 |
+
|
332 |
+
builder = registry.get_builder_class(name)(dataset_config)
|
333 |
+
dataset = builder.build_datasets()
|
334 |
+
|
335 |
+
dataset['train'].name = name
|
336 |
+
if 'sample_ratio' in dataset_config:
|
337 |
+
dataset['train'].sample_ratio = dataset_config.sample_ratio
|
338 |
+
|
339 |
+
datasets[name] = dataset
|
340 |
+
|
341 |
+
return datasets
|
342 |
+
|
343 |
+
def train_step(self, model, samples):
|
344 |
+
loss = model(samples)["loss"]
|
345 |
+
return loss
|
346 |
+
|
347 |
+
def valid_step(self, model, samples):
|
348 |
+
raise NotImplementedError
|
349 |
+
|
350 |
+
def before_evaluation(self, model, dataset, **kwargs):
|
351 |
+
model.before_evaluation(dataset=dataset, task_type=type(self))
|
352 |
+
|
353 |
+
def after_evaluation(self, **kwargs):
|
354 |
+
pass
|
355 |
+
|
356 |
+
def inference_step(self):
|
357 |
+
raise NotImplementedError
|
358 |
+
|
359 |
+
def evaluation(self, model, data_loader, cuda_enabled=True):
|
360 |
+
metric_logger = MetricLogger(delimiter=" ")
|
361 |
+
header = "Evaluation"
|
362 |
+
# TODO make it configurable
|
363 |
+
print_freq = 10
|
364 |
+
|
365 |
+
results = []
|
366 |
+
|
367 |
+
for samples in metric_logger.log_every(data_loader, print_freq, header):
|
368 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
369 |
+
|
370 |
+
eval_output = self.valid_step(model=model, samples=samples)
|
371 |
+
results.extend(eval_output)
|
372 |
+
|
373 |
+
if is_dist_avail_and_initialized():
|
374 |
+
dist.barrier()
|
375 |
+
|
376 |
+
return results
|
377 |
+
|
378 |
+
def train_epoch(
|
379 |
+
self,
|
380 |
+
epoch,
|
381 |
+
model,
|
382 |
+
data_loader,
|
383 |
+
optimizer,
|
384 |
+
lr_scheduler,
|
385 |
+
scaler=None,
|
386 |
+
cuda_enabled=False,
|
387 |
+
log_freq=50,
|
388 |
+
accum_grad_iters=1,
|
389 |
+
):
|
390 |
+
return self._train_inner_loop(
|
391 |
+
epoch=epoch,
|
392 |
+
iters_per_epoch=lr_scheduler.iters_per_epoch,
|
393 |
+
model=model,
|
394 |
+
data_loader=data_loader,
|
395 |
+
optimizer=optimizer,
|
396 |
+
scaler=scaler,
|
397 |
+
lr_scheduler=lr_scheduler,
|
398 |
+
log_freq=log_freq,
|
399 |
+
cuda_enabled=cuda_enabled,
|
400 |
+
accum_grad_iters=accum_grad_iters,
|
401 |
+
)
|
402 |
+
|
403 |
+
def train_iters(
|
404 |
+
self,
|
405 |
+
epoch,
|
406 |
+
start_iters,
|
407 |
+
iters_per_inner_epoch,
|
408 |
+
model,
|
409 |
+
data_loader,
|
410 |
+
optimizer,
|
411 |
+
lr_scheduler,
|
412 |
+
scaler=None,
|
413 |
+
cuda_enabled=False,
|
414 |
+
log_freq=50,
|
415 |
+
accum_grad_iters=1,
|
416 |
+
):
|
417 |
+
return self._train_inner_loop(
|
418 |
+
epoch=epoch,
|
419 |
+
start_iters=start_iters,
|
420 |
+
iters_per_epoch=iters_per_inner_epoch,
|
421 |
+
model=model,
|
422 |
+
data_loader=data_loader,
|
423 |
+
optimizer=optimizer,
|
424 |
+
scaler=scaler,
|
425 |
+
lr_scheduler=lr_scheduler,
|
426 |
+
log_freq=log_freq,
|
427 |
+
cuda_enabled=cuda_enabled,
|
428 |
+
accum_grad_iters=accum_grad_iters,
|
429 |
+
)
|
430 |
+
|
431 |
+
def _train_inner_loop(
|
432 |
+
self,
|
433 |
+
epoch,
|
434 |
+
iters_per_epoch,
|
435 |
+
model,
|
436 |
+
data_loader,
|
437 |
+
optimizer,
|
438 |
+
lr_scheduler,
|
439 |
+
scaler=None,
|
440 |
+
start_iters=None,
|
441 |
+
log_freq=50,
|
442 |
+
cuda_enabled=False,
|
443 |
+
accum_grad_iters=1,
|
444 |
+
):
|
445 |
+
"""
|
446 |
+
An inner training loop compatible with both epoch-based and iter-based training.
|
447 |
+
|
448 |
+
When using epoch-based, training stops after one epoch; when using iter-based,
|
449 |
+
training stops after #iters_per_epoch iterations.
|
450 |
+
"""
|
451 |
+
use_amp = scaler is not None
|
452 |
+
|
453 |
+
if not hasattr(data_loader, "__next__"):
|
454 |
+
# convert to iterator if not already
|
455 |
+
data_loader = iter(data_loader)
|
456 |
+
|
457 |
+
metric_logger = MetricLogger(delimiter=" ")
|
458 |
+
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
|
459 |
+
metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}"))
|
460 |
+
|
461 |
+
# if iter-based runner, schedule lr based on inner epoch.
|
462 |
+
logging.info(
|
463 |
+
"Start training epoch {}, {} iters per inner epoch.".format(
|
464 |
+
epoch, iters_per_epoch
|
465 |
+
)
|
466 |
+
)
|
467 |
+
header = "Train: data epoch: [{}]".format(epoch)
|
468 |
+
if start_iters is None:
|
469 |
+
# epoch-based runner
|
470 |
+
inner_epoch = epoch
|
471 |
+
else:
|
472 |
+
# In iter-based runner, we schedule the learning rate based on iterations.
|
473 |
+
inner_epoch = start_iters // iters_per_epoch
|
474 |
+
header = header + "; inner epoch [{}]".format(inner_epoch)
|
475 |
+
|
476 |
+
for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header):
|
477 |
+
# if using iter-based runner, we stop after iters_per_epoch iterations.
|
478 |
+
if i >= iters_per_epoch:
|
479 |
+
break
|
480 |
+
|
481 |
+
samples = next(data_loader)
|
482 |
+
|
483 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
484 |
+
samples.update(
|
485 |
+
{
|
486 |
+
"epoch": inner_epoch,
|
487 |
+
"num_iters_per_epoch": iters_per_epoch,
|
488 |
+
"iters": i,
|
489 |
+
}
|
490 |
+
)
|
491 |
+
|
492 |
+
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)
|
493 |
+
|
494 |
+
with torch.cuda.amp.autocast(enabled=use_amp):
|
495 |
+
loss = self.train_step(model=model, samples=samples)
|
496 |
+
|
497 |
+
# after_train_step()
|
498 |
+
if use_amp:
|
499 |
+
scaler.scale(loss).backward()
|
500 |
+
else:
|
501 |
+
loss.backward()
|
502 |
+
|
503 |
+
# update gradients every accum_grad_iters iterations
|
504 |
+
if (i + 1) % accum_grad_iters == 0:
|
505 |
+
if use_amp:
|
506 |
+
scaler.step(optimizer)
|
507 |
+
scaler.update()
|
508 |
+
else:
|
509 |
+
optimizer.step()
|
510 |
+
optimizer.zero_grad()
|
511 |
+
|
512 |
+
metric_logger.update(loss=loss.item())
|
513 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
514 |
+
|
515 |
+
# after train_epoch()
|
516 |
+
# gather the stats from all processes
|
517 |
+
metric_logger.synchronize_between_processes()
|
518 |
+
logging.info("Averaged stats: " + str(metric_logger.global_avg()))
|
519 |
+
return {
|
520 |
+
k: "{:.3f}".format(meter.global_avg)
|
521 |
+
for k, meter in metric_logger.meters.items()
|
522 |
+
}
|
523 |
+
|
524 |
+
@staticmethod
|
525 |
+
def save_result(result, result_dir, filename, remove_duplicate=""):
|
526 |
+
import json
|
527 |
+
|
528 |
+
result_file = os.path.join(
|
529 |
+
result_dir, "%s_rank%d.json" % (filename, get_rank())
|
530 |
+
)
|
531 |
+
final_result_file = os.path.join(result_dir, "%s.json" % filename)
|
532 |
+
|
533 |
+
json.dump(result, open(result_file, "w"))
|
534 |
+
|
535 |
+
if is_dist_avail_and_initialized():
|
536 |
+
dist.barrier()
|
537 |
+
|
538 |
+
if is_main_process():
|
539 |
+
logging.warning("rank %d starts merging results." % get_rank())
|
540 |
+
# combine results from all processes
|
541 |
+
result = []
|
542 |
+
|
543 |
+
for rank in range(get_world_size()):
|
544 |
+
result_file = os.path.join(
|
545 |
+
result_dir, "%s_rank%d.json" % (filename, rank)
|
546 |
+
)
|
547 |
+
res = json.load(open(result_file, "r"))
|
548 |
+
result += res
|
549 |
+
|
550 |
+
if remove_duplicate:
|
551 |
+
result_new = []
|
552 |
+
id_list = []
|
553 |
+
for res in result:
|
554 |
+
if res[remove_duplicate] not in id_list:
|
555 |
+
id_list.append(res[remove_duplicate])
|
556 |
+
result_new.append(res)
|
557 |
+
result = result_new
|
558 |
+
|
559 |
+
json.dump(result, open(final_result_file, "w"))
|
560 |
+
print("result file saved to %s" % final_result_file)
|
561 |
+
|
562 |
+
return final_result_file
|
563 |
+
|
564 |
+
|
565 |
+
class BaseProcessor:
|
566 |
+
def __init__(self):
|
567 |
+
self.transform = lambda x: x
|
568 |
+
return
|
569 |
+
|
570 |
+
def __call__(self, item):
|
571 |
+
return self.transform(item)
|
572 |
+
|
573 |
+
@classmethod
|
574 |
+
def from_config(cls, cfg=None):
|
575 |
+
return cls()
|
576 |
+
|
577 |
+
def build(self, **kwargs):
|
578 |
+
cfg = OmegaConf.create(kwargs)
|
579 |
+
|
580 |
+
return self.from_config(cfg)
|
581 |
+
|
582 |
+
def get_cache_path(rel_path):
|
583 |
+
return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path))
|
584 |
+
|
585 |
+
|
586 |
+
class BaseDatasetBuilder:
|
587 |
+
train_dataset_cls, eval_dataset_cls = None, None
|
588 |
+
|
589 |
+
def __init__(self, cfg=None):
|
590 |
+
super().__init__()
|
591 |
+
|
592 |
+
if cfg is None:
|
593 |
+
# help to create datasets from default config.
|
594 |
+
self.config = load_dataset_config(self.default_config_path())
|
595 |
+
elif isinstance(cfg, str):
|
596 |
+
self.config = load_dataset_config(cfg)
|
597 |
+
else:
|
598 |
+
# when called from task.build_dataset()
|
599 |
+
self.config = cfg
|
600 |
+
|
601 |
+
self.data_type = self.config.data_type
|
602 |
+
|
603 |
+
self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
604 |
+
self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
605 |
+
|
606 |
+
def build_datasets(self):
|
607 |
+
# download, split, etc...
|
608 |
+
# only called on 1 GPU/TPU in distributed
|
609 |
+
|
610 |
+
if is_main_process():
|
611 |
+
self._download_data()
|
612 |
+
|
613 |
+
if is_dist_avail_and_initialized():
|
614 |
+
dist.barrier()
|
615 |
+
|
616 |
+
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
617 |
+
logging.info("Building datasets...")
|
618 |
+
datasets = self.build() # dataset['train'/'val'/'test']
|
619 |
+
|
620 |
+
return datasets
|
621 |
+
|
622 |
+
def build_processors(self):
|
623 |
+
vis_proc_cfg = self.config.get("vis_processor")
|
624 |
+
txt_proc_cfg = self.config.get("text_processor")
|
625 |
+
|
626 |
+
if vis_proc_cfg is not None:
|
627 |
+
vis_train_cfg = vis_proc_cfg.get("train")
|
628 |
+
vis_eval_cfg = vis_proc_cfg.get("eval")
|
629 |
+
|
630 |
+
self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
|
631 |
+
self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)
|
632 |
+
|
633 |
+
if txt_proc_cfg is not None:
|
634 |
+
txt_train_cfg = txt_proc_cfg.get("train")
|
635 |
+
txt_eval_cfg = txt_proc_cfg.get("eval")
|
636 |
+
|
637 |
+
self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
|
638 |
+
self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)
|
639 |
+
|
640 |
+
@staticmethod
|
641 |
+
def _build_proc_from_cfg(cfg):
|
642 |
+
return (
|
643 |
+
registry.get_processor_class(cfg.name).from_config(cfg)
|
644 |
+
if cfg is not None
|
645 |
+
else None
|
646 |
+
)
|
647 |
+
|
648 |
+
@classmethod
|
649 |
+
def default_config_path(cls, type="default"):
|
650 |
+
return get_abs_path(cls.DATASET_CONFIG_DICT[type])
|
651 |
+
|
652 |
+
def _download_data(self):
|
653 |
+
self._download_ann()
|
654 |
+
self._download_vis()
|
655 |
+
|
656 |
+
def _download_ann(self):
|
657 |
+
"""
|
658 |
+
Download annotation files if necessary.
|
659 |
+
All the vision-language datasets should have annotations of unified format.
|
660 |
+
|
661 |
+
storage_path can be:
|
662 |
+
(1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
|
663 |
+
(2) basename/dirname: will be suffixed with base name of URL if dirname is provided.
|
664 |
+
|
665 |
+
Local annotation paths should be relative.
|
666 |
+
"""
|
667 |
+
anns = self.config.build_info.annotations
|
668 |
+
|
669 |
+
splits = anns.keys()
|
670 |
+
|
671 |
+
cache_root = registry.get_path("cache_root")
|
672 |
+
|
673 |
+
for split in splits:
|
674 |
+
info = anns[split]
|
675 |
+
|
676 |
+
urls, storage_paths = info.get("url", None), info.storage
|
677 |
+
|
678 |
+
if isinstance(urls, str):
|
679 |
+
urls = [urls]
|
680 |
+
if isinstance(storage_paths, str):
|
681 |
+
storage_paths = [storage_paths]
|
682 |
+
|
683 |
+
assert len(urls) == len(storage_paths)
|
684 |
+
|
685 |
+
for url_or_filename, storage_path in zip(urls, storage_paths):
|
686 |
+
# if storage_path is relative, make it full by prefixing with cache_root.
|
687 |
+
if not os.path.isabs(storage_path):
|
688 |
+
storage_path = os.path.join(cache_root, storage_path)
|
689 |
+
|
690 |
+
dirname = os.path.dirname(storage_path)
|
691 |
+
if not os.path.exists(dirname):
|
692 |
+
os.makedirs(dirname)
|
693 |
+
|
694 |
+
if os.path.isfile(url_or_filename):
|
695 |
+
src, dst = url_or_filename, storage_path
|
696 |
+
if not os.path.exists(dst):
|
697 |
+
shutil.copyfile(src=src, dst=dst)
|
698 |
+
else:
|
699 |
+
logging.info("Using existing file {}.".format(dst))
|
700 |
+
else:
|
701 |
+
if os.path.isdir(storage_path):
|
702 |
+
# if only dirname is provided, suffix with basename of URL.
|
703 |
+
raise ValueError(
|
704 |
+
"Expecting storage_path to be a file path, got directory {}".format(
|
705 |
+
storage_path
|
706 |
+
)
|
707 |
+
)
|
708 |
+
else:
|
709 |
+
filename = os.path.basename(storage_path)
|
710 |
+
|
711 |
+
download_url(url=url_or_filename, root=dirname, filename=filename)
|
712 |
+
|
713 |
+
def _download_vis(self):
|
714 |
+
|
715 |
+
storage_path = self.config.build_info.get(self.data_type).storage
|
716 |
+
storage_path = get_cache_path(storage_path)
|
717 |
+
|
718 |
+
if not os.path.exists(storage_path):
|
719 |
+
warnings.warn(
|
720 |
+
f"""
|
721 |
+
The specified path {storage_path} for visual inputs does not exist.
|
722 |
+
Please provide a correct path to the visual inputs or
|
723 |
+
refer to datasets/download_scripts/README.md for downloading instructions.
|
724 |
+
"""
|
725 |
+
)
|
726 |
+
|
727 |
+
def build(self):
|
728 |
+
"""
|
729 |
+
Create by split datasets inheriting torch.utils.data.Datasets.
|
730 |
+
|
731 |
+
# build() can be dataset-specific. Overwrite to customize.
|
732 |
+
"""
|
733 |
+
self.build_processors()
|
734 |
+
|
735 |
+
build_info = self.config.build_info
|
736 |
+
|
737 |
+
ann_info = build_info.annotations
|
738 |
+
vis_info = build_info.get(self.data_type)
|
739 |
+
|
740 |
+
datasets = dict()
|
741 |
+
for split in ann_info.keys():
|
742 |
+
if split not in ["train", "val", "test"]:
|
743 |
+
continue
|
744 |
+
|
745 |
+
is_train = split == "train"
|
746 |
+
|
747 |
+
# processors
|
748 |
+
vis_processor = (
|
749 |
+
self.vis_processors["train"]
|
750 |
+
if is_train
|
751 |
+
else self.vis_processors["eval"]
|
752 |
+
)
|
753 |
+
text_processor = (
|
754 |
+
self.text_processors["train"]
|
755 |
+
if is_train
|
756 |
+
else self.text_processors["eval"]
|
757 |
+
)
|
758 |
+
|
759 |
+
# annotation path
|
760 |
+
ann_paths = ann_info.get(split).storage
|
761 |
+
if isinstance(ann_paths, str):
|
762 |
+
ann_paths = [ann_paths]
|
763 |
+
|
764 |
+
abs_ann_paths = []
|
765 |
+
for ann_path in ann_paths:
|
766 |
+
if not os.path.isabs(ann_path):
|
767 |
+
ann_path = get_cache_path(ann_path)
|
768 |
+
abs_ann_paths.append(ann_path)
|
769 |
+
ann_paths = abs_ann_paths
|
770 |
+
|
771 |
+
# visual data storage path
|
772 |
+
vis_path = os.path.join(vis_info.storage, split)
|
773 |
+
|
774 |
+
if not os.path.isabs(vis_path):
|
775 |
+
# vis_path = os.path.join(utils.get_cache_path(), vis_path)
|
776 |
+
vis_path = get_cache_path(vis_path)
|
777 |
+
|
778 |
+
if not os.path.exists(vis_path):
|
779 |
+
warnings.warn("storage path {} does not exist.".format(vis_path))
|
780 |
+
|
781 |
+
# create datasets
|
782 |
+
dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
|
783 |
+
datasets[split] = dataset_cls(
|
784 |
+
vis_processor=vis_processor,
|
785 |
+
text_processor=text_processor,
|
786 |
+
ann_paths=ann_paths,
|
787 |
+
vis_root=vis_path,
|
788 |
+
)
|
789 |
+
|
790 |
+
return datasets
|
791 |
+
|
792 |
+
|
793 |
+
|
794 |
+
|
795 |
class Registry:
|
796 |
mapping = {
|
797 |
"builder_name_mapping": {},
|
|
|
813 |
|
814 |
Usage:
|
815 |
|
816 |
+
# from lavi.common.registry import registry
|
817 |
+
# from lavi.datasets.base_dataset_builder import BaseDatasetBuilder
|
818 |
"""
|
819 |
|
820 |
def wrap(builder_cls):
|
821 |
+
# from musilingo.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
822 |
|
823 |
assert issubclass(
|
824 |
builder_cls, BaseDatasetBuilder
|
|
|
845 |
|
846 |
Usage:
|
847 |
|
848 |
+
# from lavi.common.registry import registry
|
849 |
"""
|
850 |
|
851 |
def wrap(task_cls):
|
852 |
+
# from musilingo.tasks.base_task import BaseTask
|
853 |
|
854 |
assert issubclass(
|
855 |
task_cls, BaseTask
|
|
|
874 |
|
875 |
Usage:
|
876 |
|
877 |
+
# from lavi.common.registry import registry
|
878 |
"""
|
879 |
|
880 |
def wrap(model_cls):
|
|
|
902 |
|
903 |
Usage:
|
904 |
|
905 |
+
# from lavi.common.registry import registry
|
906 |
"""
|
907 |
|
908 |
def wrap(processor_cls):
|
909 |
+
# from musilingo.processors import BaseProcessor
|
910 |
|
911 |
assert issubclass(
|
912 |
processor_cls, BaseProcessor
|
|
|
931 |
|
932 |
Usage:
|
933 |
|
934 |
+
# from minigpt4.common.registry import registry
|
935 |
"""
|
936 |
|
937 |
def wrap(lr_sched_cls):
|
|
|
955 |
|
956 |
Usage:
|
957 |
|
958 |
+
# from minigpt4.common.registry import registry
|
959 |
"""
|
960 |
|
961 |
def wrap(runner_cls):
|
|
|
979 |
|
980 |
Usage:
|
981 |
|
982 |
+
# from minigpt4.common.registry import registry
|
983 |
"""
|
984 |
assert isinstance(path, str), "All path must be str."
|
985 |
if name in cls.mapping["paths"]:
|
|
|
995 |
|
996 |
Usage::
|
997 |
|
998 |
+
# from minigpt4.common.registry import registry
|
999 |
|
1000 |
registry.register("config", {})
|
1001 |
"""
|
|
|
1104 |
name: Key which needs to be removed.
|
1105 |
Usage::
|
1106 |
|
1107 |
+
# from mmf.common.registry import registry
|
1108 |
|
1109 |
config = registry.unregister("config")
|
1110 |
"""
|